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Approximate Analytical Description of the 

Projectile Motion with a Quadratic Drag Force 
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In this paper, the problem of the motion of a projectile thrown at an 

angle to the horizon is studied. With zero air drag force, the analytic 

solution is well known. The trajectory of the projectile is a parabola. 

In situations of practical interest, such as throwing a ball with the 

occurrence of the impact of the medium the quadratic resistance law 

is usually used. In that case the problem probably does not have an 

exact analytic solution and therefore in most scientific publications it 

is solved numerically. Analytic approaches to the solution of the 

problem are not sufficiently advanced. Meanwhile, analytical 

solutions are very convenient for a straightforward adaptation to 

applied problems and are especially useful for a qualitative analysis. 

That is why the description of the projectile motion with a simple 

approximate analytical formula under the quadratic air resistance 

represents  great methodological interest. Lately these formulas have 

been obtained. These formulas allow us to obtain a complete 

analytical description of the problem. This description includes 

analytical formulas for determining the basic eight parameters of 

projectile motion. Analytical formulas have been derived for the six 

basic functional dependences of the problem, including the 

trajectory equation in Cartesian coordinates. Also this description 

includes the determination of the optimum throwing angle and 

maximum range of the motion. In the absence of air resistance, all 

these relations turn into well-known formulas of the theory of the 

parabolic motion of the projectile. The proposed analytical solution 

differs from other solutions by simplicity of formulas, ease of use and 

high accuracy (relative error is about 1-2 %). The motion of a 

baseball is presented as an example. The proposed formulas make it 

possible to carry out an analytical investigation of the motion of a 

projectile in a medium with resistance in the way it is done in the 

case of no drag.  

 

 

Introduction 

 

The problem of the motion of a point mass (projectile) thrown at an angle 

to the horizon in midair has a long history. It is one of the great classical 

problems that started the dynamics as a science. The number of works devoted 
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to this task is immense. It represents a constituent of many introductory courses 

of physics. With no drag, the analytic solution of this problem is well known. 

The trajectory of the point mass is a parabola. In this paper, an analytic 

approach is used for the investigation of the projectile motion in a medium 

with quadratic resistance. The object of the present work is to give simple 

formulas for the construction of the projectile trajectories under the motion 

with quadratic air resistance. These formulas are available even for first-year 

undergraduates. 

The problem of the motion of a projectile in midair has aroused interest of 

authors (Cohen et al., 2014; Kantrowitz & Neumann, 2013; Borghi, 2013). For 

the construction of the analytical solutions various methods are used – both the 

traditional approaches (Benacka, 2010; Vial, 2007; Parker, 1977; Erlichson, 

1983; Tan, Frick & Castillo, 1987)], and the modern methods (Yabushita, 

Yamashita & Tsuboi, 2007). All proposed approximate analytical solutions are 

rather complicated and inconvenient for educational purposes. This is why the 

description of the projectile motion by means of a simple approximate 

analytical formula under the quadratic air resistance is of great methodological 

and educational importance. In (Chudinov, 2002; 2004; 2013) comparatively 

simple approximate analytical formulas have been obtained to study the motion 

of the projectile in a medium with a quadratic drag force. In this article, these 

formulas are used to solve the classical problem of maximizing the projectile 

distance. From now on, the term “point mass” means the center of mass of a 

smooth spherical object of  finite radius r and cross-sectional area S = πr
2
. The 

conditions of applicability of the quadratic resistance law are deemed to be 

fulfilled, i.e. Reynolds number Re lies within 1×10
3 

< Re < 2×10
5
. These 

values correspond to the projectile motion velocity, lying in the range between 

0.25 m/s and 53 m/s. 

 

 

Equations of Point Mass Motion and Analytical Formulas for Basic 

Parameters 

 

Suppose that the force of gravity affects the point mass together with the 

force of air resistance R (see Fig. 1). Air resistance force is proportional to the 

square of the velocity of the point mass and is directed opposite the velocity 

vector. For the convenience of further calculations, the drag force will be 

written as 
2R mgkV . Here m is the mass of the projectile, g is the 

acceleration due to gravity, k is the proportionality factor.  Vector equation of 

the motion of the point mass has the form 

 

mw = mg + R, 

 

where w – acceleration vector of the point mass. Differential equations of the 

motion, commonly used in ballistics, are as follows (Okunev, 1943) 
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Here V is the velocity of the point mass, θ is the angle between the tangent 

to the trajectory of the point  mass  and  the  horizontal, x, y are the Cartesian 

coordinates of the point mass, k  is  

 

2

1
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a  is the air density, cd is the drag factor for a sphere, S  is the cross-section 

area of the object, and Vterm is  the terminal velocity. The first two equations of 

the system (1) represent the projections of the vector equation of motion on the 

tangent and principal normal to the trajectory; the other two are kinematic 

relations connecting the projections of the velocity vector point mass  on the 

axis  x, y  with derivatives of the coordinates. 

 

Figure 1. Basic Motion Parameters 

 
The well-known solution of system (1) consists of an explicit analytical  

dependence of the velocity on the slope angle of the trajectory and three 

quadratures  
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Here V0   and   θ0   are the initial values of the velocity and the slope of the 

trajectory respectively,  t0 is the initial value of the time, x0, y0 are the initial 

values of the coordinates of the point mass (usually accepted  

The derivation of the formulas (2) is shown in the well-known monograph 

(Timoshenko & Young, 1948). The integrals on the right-hand sides of 

formulas (3) cannot be expressed in terms of elementary functions. Hence, to 

determine the variables t, x and y we must either integrate system (1)  

numerically or evaluate the definite integrals (3).   

Comparatively simple approximate analytical formulas for the main 

parameters of motion of the projectile are derived in (Chudinov, 2002, 2004). 

The four parameters correspond to the top of the trajectory, four – to the point 

of drop. We will give a complete summary of the formulas for the maximum 

height of ascent of the point mass H, motion time Т, the velocity at the 

trajectory apex Va = V(0), flight range  L, the time of ascent  ta , the abscissa of 

the trajectory apex хa, impact angle with respect to the horizontal θ1  and the 

final velocity V1 (see Fig. 1). These formulas are summarized in the right 

column of Table 1. In the left column of this Table 1 similar formulas of the 

parabolic theory are presented for comparison.  

 

Table 1. Analytical Formulas for the Main Parameters 

No drag  ( R = 0 ) Quadratic drag force ( R = mgkV 
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With zero drag (k = 0), these formulas go over into the respective formulas 

of the point mass parabolic motion theory. All motion characteristics described 

by these formulas are functions of initial conditions of throwing V0, θ0. 

Proposed formulas have a bounded region of application. We introduce the 

notation 2

0p kV . The dimensionless parameter p has the following physical 

meaning – it is the ratio of air resistance to the weight of the projectile at the 

beginning of the movement. The main characteristics of the motion H, T, Va , 

L, хa have accuracy to within 2 - 3%  for values of the launch angle, for initial 

velocity and for the parameter p from ranges 

 

0°≤  θ0  ≤ 70°,   
00 50V   m/s  ,   0  ≤  p  ≤ 1.5. 

 

For a baseball the typical values of the drag force coefficient k are about 

0.0005 ÷ 0.0006 s
2
/m

2
, maximal initial velocity is about 50 m/s (Cohen et al., 

2014; Tan et al., 1987). Therefore the proposed formulas are suitable for the 

qualitative and quantitative description of the motion of the baseball and other 

similar objects.  

These formulas, in turn, make it possible to obtain a simple analytical 

formula for the main functional relationship of the problem y(x) (Chudinov, 

2002). In the absence of air resistance, the trajectory of a point mass is a 

parabola. The equation of the trajectory can be written in two forms. It can be 

written in terms of the initial conditions of throwing V0, θ0 (first form). It can 

also be written in terms of the motion parameters H, L, xa (second form) 
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(4) 

 

The trajectory is symmetric with respect to the maximum. When the point 

mass is under a drag force, the trajectory becomes asymmetrical. The top of the 

trajectory is shifted towards the point of incidence. In addition, a vertical 

asymptote appears near the trajectory. Taking these circumstances into account, 

the function y(x) may be constructed using parameters H, L, xa as (Chudinov, 

2002) 
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The constructed dependence y(x) provides the shift of the apex of  the 

trajectory  to the right and has a vertical asymptote. In the case of no drag   L = 

2xa and formula (5) goes over to formula (4). We note the remarkable property 

of formula (5). We insert the exact values of the parameters L, Н, хa, obtained 

by numerical integration of system (1), into formula (5). Then the numerical 

trajectory and the analytical trajectory constructed by means of formula (5) are 

identical. This means that formula (5) approximates absolutely precisely the 

projectile's trajectory which is numerically constructed using system (1) at any 

values of the initial conditions V0, θ0.  

The some transformation of the proposed formulas (Chudinov, 2013) 

makes it possible to improve the accuracy of calculating the main parameters. 

Now it is possible to construct the trajectory in the entire range of launch 

angles and at values of the initial velocity and the parameter p 

 

0°≤  θ0  ≤ 90°,  
00 80V   m/s ,   0  ≤  p  ≤ 4 .   

 

 As an example of the use of the proposed formulas from the Table 1 and 

of formula (5) we calculated the motion of a baseball with the following initial 

conditions 

 

            V0 = 40  m/s ,  θ0  = 45°,  k = 0.000625  s
2
/m

2
 ,  g = 9.81  m/s

2
 . 

 

Table 2. Comparison of Numerical and Analytical Calculations  

Parameter Analytical value Numerical value Error (%) 

H (m) 30.1 29.8 1.1 

T (s) 4.96 4.91 1.0 

Va  (m/s) 19.3 19.3 0 

L  (m) 95.7 96.1 -0.4 

ta   (s) 2.30 2.31 -0.4 

xa (m) 53.7 53.0 1.3 

θ1  (degree) -58.6° -57.3° 2.2 

V1 (m/s) 26.0 25.5 2.0 

 

The results of calculations are recorded in Table 2 and are shown in Figure 

2. The second column contains the values calculated by present formulas from 

the Table 1. The third column shows the values of parameters obtained by 

numerical integration of the motion equations (1) by the fourth-order Runge-

Kutta method. The deviations from the exact values of parameters are shown in 

the fourth column of the Table 2. Tabulated data show that the values of basic 

parameters of the projectile motion (flight range L, motion time T , height H ) 

calculated by analytical formulas  differ from the exact values no more than 

1%.             
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An approximate trajectory (5) is constructed with the help of parameters  

H, L, xa. It is shown in Figure 2 (dotted line). The thick solid line in Figure 2 is 

obtained by numerical integration of system (1) with the aid of the 4-th order 

Runge-Kutta method. As can be seen from Figure 2, the analytical solution 

(formula (5)) and a numerical solution are almost the same. The dashed line in 

Figure 2 is constructed in the absence of air resistance. 

 

Figure 2. The Graph of the Trajectory y= y(x) 

 
 

One of the most important aspects of the projectile motion problem is 

determination of an optimum angle of throwing of a point mass which provides 

the maximum range. Let us make use of formulas from the Table 1 and  (5)  to 

solve the  problem of optimization of motion parameters. 

 

 

Determination of an Optimum Throwing Angle and Maximum Range 

 

Let the point of incidence A be on a horizontal straight line defined by the 

equation constyy  1   (see Fig.3).  

 

Figure 3. Statement of the Optimization Problem 
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To solve the problem, let us make use of the point mass trajectory equation 

(5). In this equation, the motion characteristics H, L, ax  are functions of initial 

conditions of throwing, 00 θ,V . They are defined by formulas from the Table 1. 

Let us substitute 1y  in the left-hand part of equation (5) and solve it for 

variable x . Thus, we shall get the flight range formula for the case under 

consideration    

  01
2

100 θcotLyδδy,θ,Vx  ,                      (6) 

where 

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



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22

1 L
x

H

yL
δ a . For the given values of the 10 y,V  parameters, 

range x is the function of 0θ , the angle of throwing. To find the optimum angle 

of throwing 0

opt  and the maximum range maxx  gained with the given 10 y,V  

values, it is sufficient to construct a graph of this function. Coordinates of the 

maximum point of the function will define values of 
 0

opt  and maxx . 

As   an  example,  let  us  analyze  the  motion  of  a  baseball  with  the  

drag factor  k = 0.000625 s
2
/m

2 
(Cohen et al., 2014). Other parameters of the 

motion are given by the following values:   

g = 9.81 m/s
2
,    0V  40 m/s,    1y  0,  20 m. 

Computation results are presented in Figure 4 and Table 3. The graphs of 

the  0θx  functions (6) for 1y = 0,  20 m are given in Figure 4.  In Figure 4, 

points A, B, C are the points of the maximum of the functions  0x   for values 

20, 0, – 20 of the parameter 1y accordingly. Numerical values of the parameters  

0

opt  and maxx in column 5 of the Table 3 were obtained by integrating the 

system (1). 

 

Figure 4. The Graphs of the   0θxx   Functions                      
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Table 3. Optimum Trajectory Parameters 

Value 

y1 

(m) 

The point of the  

maximum of the 

function  0x   
Parameter 

Analytic                              

value from 

Figure 4 

Numeric 

value 

Error 

( % ) 

20 
 

Point  A 

0

opt  (degree)  

maxx  (m) 

47.5° 

79.7 

47.8° 

79.6 
0.6 

0.1 

0  

Point  B 
0

opt  (degree)
 

maxx  (m) 

40.8° 

96.6 

40.8° 
96.8 

0 

0.2 

– 20 Point  C 

0

opt  

(degree) maxx  

(m)
 

35.8° 

109.8 

35.8° 

110.1 

0 

0.3 

 

Tabulated data show that formulas from the Table 1 and (6) make it 

possible not only to simplify the considerably solution of the problem but also 

provide a high accuracy of computations. The 0

opt  angle is determined 

accurately and the range is determined with an error of  0.6 %.  

 

 

Summary 
 

The proposed approach based on the use of analytic formulas makes it 

possible to simplify significantly a qualitative analysis of the motion of a 

projectile with the air drag taken into account. All basic parameters of motion 

and various problems of optimization are described by simple analytical 

formulas containing elementary functions. Moreover, numerical values of the 

sought variables are determined with an acceptable accuracy. It can be 

implemented even on a standard calculator. Lately some authors (Warburton & 

Wang, 2004; Stewart, 2005; Hu et al., 2012) have used the Lambert W function 

to study the projectile motion with resistance. But this relatively “new” 

function is not available on a calculator. Special algorithms are required to 

compute this function. Thus, proposed formulas make it possible to study 

projectile motion with quadratic drag force even for first-year undergraduates.  

In conclusion, we hope that efforts to obtain an analytical solution to this 

problem will be continued and will achieve new exact and efficient solutions. 

 

 

Acknowledgements 

 

The author would like to thank Dr. D.V. Zitta and Dr. A.V. Fainshtein for 

the valuable advice for this paper. 

 



Vol. 1, No. 2        Chudinov: Approximate Analytical Description of the Projectile Motion… 
                           

106 

References 

 
Baće, M., Ilijić, S., Narancić, Z., Bistricić, L. (2002). The envelope of projectile 

trajectories. European  Journal of Physics.  23, 637-642.  

Benacka, J. (2010). Solution to projectile motion with quadratic drag and graphing the 

trajectory in spreadsheets. International Journal of Mathematical Education in 

Science and Technology. 41, 373-378.  

Borghi, R. (2013). Trajectory of a body in a resistance medium: an elementary 

derivation. European Journal of  Physics.  34,  359-370. 

Chudinov, P.S. (2002). The motion of a heavy particle in a medium with quadratic 

drag force.  International  Journal of  Nonlinear  Sciences and  Numerical 

Simulation. 3, 121-129.  

Chudinov, P.S. (2004).  An optimal angle of launching a point mass in a medium with 

quadratic drag force. In Proceedings of 21-th International Ballistics Symposium 

(Adelaide, South Australia, April 19 – 23, 2004, Vol. 1, 511-517). 

Chudinov, P.S. (2004). Analytical investigation of point mass motion in midair.  

European  Journal of  Physics. 25, 73-79. 

Chudinov, P.S. (2013). Extension of application field of analytical formulas for the 

computation of projectile motion in midair.  Revista Brasileira de Ensino de 

Fisica. 35(1), 1310-1314. 

Cohen, C., Darbois-Texier, B., Dupeux, G., Brunel, E., Quere, D., Clanet, C.   (2014).  

The aerodynamic wall.  In  Proceedings of the Royal Society A. 470, 20130497. 

DOI=http://dx.doi.org/10.1098/rspa.2013.0497. 

Erlichson, H. (1983). Maximum projectile range with drag and lift, with particular 

application to golf.  American  Journal of Physics.  51, 357-362.  

Hu, H., Zhao, Y.P., Guo, Y.J., Zheng, M.Y. (2012). Analysis of linear resisted 

projectile motion using the Lambert W function. Acta Mechanica.  223, 441-447.  

Kantrowitz, R., Neumann, M.M. (2013).Some real analysis behind optimization of 

projectile motion. Mediterranean Journal of Mathematics. DOI:10.1007/s00009-

013-0379-5. 

Okunev, B.N. (1943). Ballistics.  Мoscow: Voyenizdat.  

 Parker, G. W. (1977).  Projectile motion with air resistance quadratic in the speed.  

American Journal of Physics. 45, 606-610.  

Stewart, S.M. (2005). Linear resisted projectile motion and the Lambert W function. 

American  Journal of Physics. 73, 199-199.  

Tan, A., Frick, C.H., Castillo, O. (1987).  The fly ball   trajectory: an older approach 

revisited. American  Journal of Physics. 55, 37-40. 

Timoshenko, S., Young, D.H. (1948). Advanced Dynamics. New  York:  McGrow-Hill 

Book Company.  

Vial, A. (2007). Horizontal distance travelled by a mobile experiencing a quadratic 

drag force: normalized distance and parameterization.   European  Journal of  

Physics. 28, 657-663.  

Warburton, R.D.H., Wang, J. (2004). Analysis of asymptotic projectile motion with air 

resistance using the Lambert W function. American  Journal of Physics. 72, 

1404-1407.  

Yabushita, K., Yamashita, M., Tsuboi, K. (2007). An analytic solution of projectile 

motion with the quadratic resistance law using the homotopy analysis method. 

Journal of Physics  A: Mathematical and Theoretical. 40, 8403-8416.  

 


