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Abstract: Avoiding complex geometric and analytic constructions, this paper considers 

techniques for visualizing the location of complex roots of quadratic, cubic, and quartic 

real polynomial functions.  This provides teachers and students of mathematics with a 

better understanding of the nature of these functions and their respective real and 

complex roots. 
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We are well aware that the real roots of a polynomial function are recognized as the x-

intercepts of the associated graph and that some quadratics have complex, non-real roots, 

always appearing in conjugate pairs.  Curiosity naturally arises regarding the location of 

these complex roots.  Herein, based singularly on the graphs (no equations) of quadratic, 

cubic, and quartic polynomial functions, we investigate means of visualizing exact or 

impressively precise approximations of the locations of complex roots.  To accomplish 

this, we first consider some preliminary mathematical notions.     

Mathematical Preliminaries 

In this investigation, numerous mathematical ideas and theorems are denoted with #; for 

these, ancillary online materials provide proofs and additional information. 

mailto:Bauldrywc@appstate.edu
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Throughout this paper, the term polynomial denotes real monic polynomials, or 

polynomials with real coefficients in which the leading coefficient is 1.  (Non-monic real 

polynomials can be divided by the leading coefficient to make them monic, without 

affecting the roots.)  These polynomials are graphed on the Cartesian plane (R×R).  Since 

non-real complex points belong to the complex plane, we co-label the y-axis with both 

real and imaginary values such that the complex root a+bı is located as (a, b) on a 

Superimposed Plane.  This plane retains the real-valued x-axis of the usual Cartesian 

plane (allowing for real zeros of polynomials to be treated in the usual manner) and has a 

y-axis that can be used in respect to locating the complex roots.   

Herein, we investigate means of analytically and geometrically constructing and 

locating complex roots on quadratic, cubic, and quartic polynomial functions.  In some 

cases, these locations are exact and in other cases they are impressively precise 

approximations.  As will be seen through some novel techniques and only minimal 

calculations, students can quite readily visualize the location of these complex roots and 

can come to appreciate the beauty of polynomial functions in a unique way, often 

invisible to those who only consider the real Cartesian plane. 

 

Constructing the Complex Roots on Quadratic Functions 

When quadratic polynomial functions have a conjugate pair of complex, non-real roots, a 

simple construction reveals their locations (Norton & Lotto, 1984).   

Technique:  Begin with the graph of a quadratic 

function f(x) with complex roots.   (See Figure 1.)  

Through the vertex, construct a line parallel to the x-

 
Figure 1 
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axis.  Reflect the parabola across this line.  This reflection will intersect the x-axis.  

Construct a circle with diameter points at these x-intercepts and rotate the intercepts 

about the center of the circle by 90° (i.e., multiply by i).  These two vertically stacked 

points (a, bi) and (a, -bi) are the complex roots, a+bi and a–bi, of f(x) in the 

Superimposed Plane.  Thus, we can recognize that 

.  Notably, since (a, b2) is the parabola’s 

vertex, the vertex and the complex roots will be vertically collinear.  Further, since 

, then we can readily calculate the height of the complex root 

with .  (To investigate this through a dynamic 

graph use: 

 http://appstate.edu/~bossemj/VisualizingRoots/MT/Quadratics/.) 

 

Constructing Complex Roots on Cubic Functions 

When a cubic polynomial function has one real root and two complex roots, a simple 

method allows us to visually locate the complex roots.  We will begin with a cubic, g(x), 

with a real root at r and two complex roots, where the real part of the complex roots is not 

equal to r. 

Technique:  Construct a tangent from the real root (r, 

0) to g(x) and denote the point of tangency as (j, k) 

(Ward, 1937).  (See Figure 2.)  This tangent is unique.  

Determine the slope (m) of this tangent.  The imaginary 

roots will be at  on the Superimposed Plane  
Figure 2 

http://appstate.edu/~bossemj/VisualizingRoots/MT/Quadratics/
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and vertically collinear with the point of tangency.  Since , we can see 

that .  (Notably, although the point of tangency is in the 

neighborhood of the extremum, these points are generally not the same.)  The inflection 

point (denoted ip on Figure 2) occurs at , or the inflection point is 2/3 of the 

way from the real root to the x-value of the complex root.  When r approaches j, the 

extremum approaches the inflection point.  (To investigate this through a dynamic graph 

use: http://appstate.edu/~bossemj/VisualizingRoots/MT/Cubics/.) 

While this technique works analytically in all cases in which r≠j and all roots are 

not vertically collinear, geometrically visualizing the tangent when the real root is close 

to the real value of the complex roots may not be possible.  When r=j, the curve has no 

extrema, r is an inflection point, and the formula holds in the limit with 

.   

 

Constructing Complex Roots for Quartic Functions 

Quartic real polynomials with complex roots come in two forms: two real roots (whether 

distinct or equal) and two complex roots (and these complex roots may or may not be 

vertically collinear with one or both real roots); or all four non-real complex roots (that 

may or may not be all vertically collinear).  A common characteristic that can be 

recognized in the graphs of most quartics investigated in high school and college is that 

they possess three extrema (i.e., two relative minima and one relative maximum).  

However, beyond this common type of quartic, the visualization technique provided 

herein successfully addresses a far more broad classification of quartics: any quartic on 

http://appstate.edu/~bossemj/VisualizingRoots/MT/Cubics/
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which a bitangent (a line that is tangent to the graph at two points) can be constructed.  

(Bitangents are depicted in some subsequent figures.)  

 However, before we begin, some ideas need to be briefly addressed.  First, not all 

quartics have a bitangent, and even when they do, they are not always obviously visible.  

Second, when a bitangent exists, it is unique.  In order to investigate this more 

thoroughly, we propose the following definition and theorems:  

Definition: A quartic polynomial with no third degree term is called reduced.  Any 

quartic polynomial, , may be reduced with the substitution 

. 

Theorem 1.  Let p be the reduced quartic polynomial .  If 

, then the line  is the unique bitangent to p with points of 

tangency at . 

Theorem 2.  For real monic quartic polynomials (including non-reduced), if the 

following conditions are met, the quartic will possess a bitangent.  For  

❖ , 

. 

❖ , 

. 
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❖ , 

. 

The x-coordinates of the bitangent are 

. 

Theorem 3.  The only case of a monic, real, quartic polynomial with all real roots not 

having a bitangent is when the four roots are the same; i.e., a real root of multiplicity 4: 

. 

To remedy difficulty locating the bitangent, 

construct one of the following lines (See Figure 3.) and 

slide it down (retaining the same slope) until it becomes 

a bitangent: (T) If the quartic has two real roots 

(whether or not distinct), r1 and r2, draw the line tangent 

to the quartic at .  (I) Draw a line through 

the graph’s points of inflection.  Lines T and I are parallel to the bitangent (B). 

With this background in place, this investigation is restricted to cases in which the 

bitangent is obviously visible.  These are considered in two broad cases: when the 

function has two real roots (double or distinct) or no real roots (Yanosik, 1943).  (To 

investigate all cases of quartics through a dynamic graph use: 

http://appstate.edu/~bossemj/VisualizingRoots/MT/Quartics/.) 

 

 

 

 
Figure 3 

http://appstate.edu/~bossemj/VisualizingRoots/MT/Quartics/
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Quartics with Two Real Roots 

We begin with a quartic function, h(x), with real roots at r1 and r2 and complex roots 

a±bi, where r1≠a and r2≠a.  In all these cases, since , 

; thus, the height of the complex root is readily calculated. 

 When the real roots are distinct: Determine 

the x-values of the two inflection points.  (We denote 

ip1 and ip2 as both the inflection points and their 

respective x-values.)  (See Figure 4.)  Then, a 

remarkably simple calculation produces the real part of 

the complex roots: .  As seen in 

Figure 5, with bitangent points at (f, g) and (j, k), this equation can be written as 

.  While we now have the locations of the complex roots, some 

beautiful additional findings come to light.   

First, as seen in Figure 5, when one point of 

inflection is between the real roots (ip1) and another is 

outside the real roots (ip2) the complex roots are 

vertically in the neighborhood of the uppermost point 

of bitangency; j approximates the value of a.  Or, 

a=j±∆.     

Second, if a relative max at x=c exists 

between r1 and r2, then a+bi resides in the complex 

rectangular strip bounded on three sides by x=c–∆, 

Figure 4 

 
Figure 6 

Figure 5 
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x=c+∆, and y=0.  (See Figure 6.)  More generally, a is in the neighborhood of the relative 

maximum between the real roots. 

When the real roots are equal: Let r1=r2=r and r≠a.  We can employ a tangent 

similar to the cubic: Construct a tangent from (r, 0) to h(x).  Then the complex roots are 

vertically in the neighborhood of the point of tangency, (j,k); j approximates the value of 

a.  Or, a=j±∆.  

Quartic With No Real Roots 

Again, we begin with quartics with obviously visible 

bitangents.  Without loss of generality, we begin with a 

quartic such that the left relative minimum is less than or 

equal to the right relative minimum.  (See Figure 7.)  

Construct the bitangent with the points of tangency of (f, 

g) and (j, k) such that f<j; this will lead to g≤k.  In this 

case, a+bi, resides in the complex rectangular strip bounded on three sides by x=f–∆ and  

x=f, and y=0 and c+di resides in the complex rectangular strip bounded by x=j and x=j+∆.  

If g<k, the maximum height of the complex rectangular strip for a+bi is the minimum 

height of the complex rectangular strip for c+di.  Unfortunately, determining these upper 

and lower bounds for these complex rectangular strips require analytic constructions that 

are significantly beyond what can be visualized.  If g=k, then the lower bounds for both 

strips is y=0.  Note that these relationships change accordingly when the left relative 

minimum is greater than the right relative minimum. 

 

 

 
Figure 7 
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How Large is ∆? 

At this point, some may be prone to ask how large or small a value ∆ may be.  Recall that 

in the cases of the quadratic and the cubic, along with the symmetric quartic with no real 

roots, the techniques provided exact locations for the real part of the complex roots and a 

rectangle was unnecessary.  This can be restated as: in these cases, the rectangles had a 

width of zero. 

 It is easy to state that in all cases ∆ is small – indeed, surprisingly small and often 

approaching zero.  Unfortunately, the mathematics to justify this claim instantaneously 

transcends many mathematically sophisticated audiences and becomes more an obstacle 

than valuable information.  We would need to discuss theorems from: Lagrange (1789); 

Cauchy (1829); Rouché (1862); the Gauss-Lucas Theorem (1874); Mohammad (c1980); 

Kojima (1914); Fujiwara (1916); and many others.  It suffices to say that the search for 

these roots is far from novel and mathematicians have long recognized this search as 

valuable.  

 Therefore, ∆ affords us to be able to visualize an amazingly precise approximate 

location for these complex roots based singularly on the graph of the respective 

polynomial with minimalist constructions.  This places deep, rich, meaningful, and 

intriguing mathematics within the grasp of high school and college students. 

 

Summary and Conclusion 

The visualizing techniques provided above allow students to investigate the location of 

complex roots of quadratic, cubic, and quartic monic polynomial functions and shed light 

on concepts previously left mostly cloaked in curricular silence.  The common notion of 
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tangents and bitangents elegantly tie the techniques together.  It is hoped that this brief 

investigation accomplishes some or all of the following: 

1.  Mathematics teachers can now go beyond stating that polynomials of degree n have n 

complex roots (some being real), they can demonstrate where these are in respect to 

quadratics, cubics, and quartics.   

2.  Students who have previously been curious about the locations of complex roots may 

gain further insight into this topic and may even wish to investigate this further through: 

working through some of the theorems provided through the ancillary documents 

previously mentioned; considering other construction techniques and why they work; 

challenging themselves to consider these notions in respect to higher degree polynomials; 

and hybridizing other graphing modalities that may be even more informative for this and 

other mathematical investigations. 

Students who have access to a 3D graphing utility may gain further insights by 

plotting the magnitude of the complex polynomial .  Figure 12 shows the 3D 

surface hi-lighting the roots; the roots are on the complex plane.  Notably, the real roots 

are on the x-axis (or the real axis) and the complex roots are clearly visible at -1±i on the 

complex plane.  Figure 13 shows the surface’s contours encircling the real and complex 

roots from a viewpoint on the z-axis. 
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Figure 12 

 

Figure 13 

  

The reader may now wonder if this story is complete.  What about polynomials of 

higher degree?  Since Abel (1823) proved that that there is no general algebraic solution 

to polynomials equations of degree five or higher with arbitrary coefficients, our story is 

almost complete (Rosen, 1995).  We cannot visualize the location of complex roots of 

polynomials of degree higher than the quartic apart from polynomials with the special 

form , where r is the real root and a±bi the complex roots.  

In this special case, the tangent technique employed for the cubic works well (Ellis, 

Bauldry, Bossé, & Otey, 2016).   

Additional extensions to the ideas in this paper can be found in other papers 

recently written by the authors (Bauldry & Bossé, 2018; Bauldry, Bossé, & Otey, 2017; 

Bossé, & Bauldry, & Otey, 2018).  
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