Springen naar inhoud

vergelijking van een cirkel


  • Log in om te kunnen reageren

#1

anakin skywalker

    anakin skywalker


  • >100 berichten
  • 226 berichten
  • Ervaren gebruiker

Geplaatst op 11 maart 2010 - 16:41

10) LaTeX



is de vergelijking van

Verborgen inhoud
Antwoord C.


Stel een vraag over deze oefening.

(Herkomst: simulatie-examen EMSA 2009)


Ik heb geen idee hoe ik dit moet uitrekenen. Ik heb ook nooit echt leren werken met cirkelvergelijkingen in het secundair.

Van een vriend en van wikipedia weet ik dat (x - x0)≤ + (y - y0)≤ = r≤ de standaardvergelijking van de cirkel is met r als straal en (x0, y0) de coŲrdinaten van het middelpunt van de cirkel.

Ik weet niet of er een vaste methode is om de vergelijking uit de vraag om te zetten naar deze standaardvergelijking? Ik heb iets geprobeerd met merkwaardige producten, maar het komt niet uit...

Dit heb ik gedaan:

2x≤ + 12x + 2y≤ + 6y = 0 is de vergelijking.

2 (x - (-3))≤ + 2 (y - (- 3/2))≤ = 0 (ik weet niet of ik zomaar die 2'en voor de haakjes mag zetten, maar anders raakte ik niet verder)...

2 (x≤ - 2 (-3)x + 9) + 2(y≤ - 2 (-3/2)y + 9/4) = 0

2x≤ + 12x + 18 + 2y≤ + 6y + 9/2 = 0

aangezien ik er door de merkwaardige producten voor gezorgd heb dat er 18 en 9/2 bijgeteld worden, moet ik die ook weer aftrekken, zodat:

2 (x - (-3))≤ + 2 (y - (-3/2))≤ -18 - 9/2 = 0, dus..

2 (x - (-3))≤ + 2 (y - (-3/2))≤ = 18 + 9/2

2 (x - (-3))≤ + 2 (y - (-3/2))≤ = 55/2 (36/2 + 9/2)

Omdat de straal in het kwadraat staat in deze formule, moet dus de vierkantwortel van 55/2 genomen worden..en die is dus niet hetzelfde als 3/2 sqr(5).

Misschien staan er nog wel rekenfouten in, maar dan nog is de methode volgens mij niet erg correct..

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Xenion

    Xenion


  • >1k berichten
  • 2609 berichten
  • Moderator

Geplaatst op 11 maart 2010 - 17:56

Ik heb niet alles bekeken, maar de methode bestaat er inderdaad in van de merkwaardige producten in de vergelijking te forceren:


LaTeX

Deel om te beginnen de hele vergelijking al door 2, dan krijg je coŽfficiŽnten 1 bij x≤ en y≤.
Daarna moet je inderdaad gaan proberen merkwaardige producten te forceren. Je kijkt naar de term met x en y en daaruit kan je dan zien wat je nog binnen de haken kan kwadrateren. Je moet dan inderdaad nog iets aftrekken van de constante om de gelijkheid te behouden.

#3

EvilBro

    EvilBro


  • >5k berichten
  • 6803 berichten
  • VIP

Geplaatst op 11 maart 2010 - 17:59

2 (x - (-3))≤ + 2 (y - (-3/2))≤ = 18 + 9/2

2 (x - (-3))≤ + 2 (y - (-3/2))≤ = 55/2 (36/2 + 9/2)

Bij deze stap gaat het mis (36+9 = 45). Deel daarna beide zijdes door 2 en neem dan de wortel van de rechter zijde en je bent er.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures