Springen naar inhoud

Mounting force (22KN) omzetten naar Moment in NM


  • Log in om te kunnen reageren

#1

AWeeda

    AWeeda


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 20 januari 2018 - 15:12

Geacht forum,

 

Voor een project moet ik een zogenaamde Hockey Puck Thyristor gebruiken. Dit component (wat er inderdaad uitziet als een hockey puck) moet geklemd worden tussen twee platen. De Datasheet geeft aan dat de 'mounting force'  voor de thyristor 22KN (KiloNewton) is.

 

De klemplaten worden aangedraaid met 1 * M14 bout met 1.5 mm spoed schroefdraad.

 

De vraag is nu welk moment in NM er nodig is om 22KN 'mounting force' te krijgen. Deze waarde is van belang voor het correct instellen van de momentsleutel waarmee de bout moet worden aangedaaid.

 

Alvast zeer bedankt voor uw reactie(s) en hulp!

 

Met vriendelijke groet,

 

Albert


Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Michel Uphoff

    Michel Uphoff


  • >5k berichten
  • 6472 berichten
  • Moderator

Geplaatst op 20 januari 2018 - 19:27

Heb je DEZE calculator al gezien?

Of anders DEZE tabel?

Motus inter corpora relativus tantum est.

#3

AWeeda

    AWeeda


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 20 januari 2018 - 21:03

Hi Michel,

 

Dank voor je reactie!

 

Beiden ken ik inderdaad, maar daar kom ik niet uit.

In die calculator wordt van alles en nogwat als input gevraagd maar juist de spoed kan ik niet aanpassen, die wordt telkens terug op 2 gezet.

De tabel geeft alleen de maxima aan die een bout van een bepaalde sterkte aankan, maar niet hoeveel moment in NM ik nodig heb om 22KN kracht te krijgen op de M14 bout met 1,5 mm spoed.

 

Dus ik blijf rondjes lopen in dezelfde tabellen en lijstjes.....

 

Groet,

 

Albert


#4

Dirk B

    Dirk B


  • >100 berichten
  • 138 berichten
  • Ervaren gebruiker

Geplaatst op 20 januari 2018 - 23:18

Hi Michel,
 
Dank voor je reactie!
 
Beiden ken ik inderdaad, maar daar kom ik niet uit.
In die calculator wordt van alles en nogwat als input gevraagd maar juist de spoed kan ik niet aanpassen, die wordt telkens terug op 2 gezet.
De tabel geeft alleen de maxima aan die een bout van een bepaalde sterkte aankan, maar niet hoeveel moment in NM ik nodig heb om 22KN kracht te krijgen op de M14 bout met 1,5 mm spoed.
 
Dus ik blijf rondjes lopen in dezelfde tabellen en lijstjes.....
 
Groet,
 
Albert


Al rekenende kom ik op 5,25 Nm aandraaimoment (zonder wrijving)

Met wrijving zal dit zo’n 10 % hoger zijn denk ik zo.

Gr.Dirk.

Veranderd door Michel Uphoff, 20 januari 2018 - 23:26
reclame verwijderd


#5

Michel Uphoff

    Michel Uphoff


  • >5k berichten
  • 6472 berichten
  • Moderator

Geplaatst op 20 januari 2018 - 23:23

Ik ben niet bekend met de praktijk van bouten, maar m.i. kan je het zo benaderen:

 

De spoed is 1,5 mm. Bij elke hele omwenteling stijgt/daalt de bout met deze waarde.

Nu maak ik een arm van 1 meter aan die bout. Dan moet ik het uiteinde 2 pi*1000 = 6280 mm verplaatsen voor een omwenteling. Dat is een kracht-arm verhouding van 6280/1,5 = 4188.

Dan zou ik zonder enige wrijving uitkomen op 22000 N/4188 = 5,25 Nm


Edit1: Ah, onze berichten kruisten. We hebben dezelfde uitkomst. O:)

Geen idee wat je als redelijke waarde voor de wrijving moet nemen. Die is afhankelijk van de smering, de oppervlakteruwheid, de materiaalsoorten en de wrijving tussen boutkop en plaat. Puur op gevoel lijkt 10% mij wat weinig.

 

Edit2: In de tabel die ik gaf hanteert men 14% Ik neem aan dat dat staal op staal met smering is. Dat zou een moment van 6 Nm opleveren. Zonder smering wordt de wrijving forser.

 

HIER vind je de wrijvingscoëfficiënten tussen verschillende metalen, met of zonder smering.

Veranderd door Michel Uphoff, 21 januari 2018 - 01:54
toevoegingen

Motus inter corpora relativus tantum est.

#6

Dirk B

    Dirk B


  • >100 berichten
  • 138 berichten
  • Ervaren gebruiker

Geplaatst op 20 januari 2018 - 23:53

maar m.i. kan je het zo benaderen:


Ik heb de berekeningsweg via spoedhoek en krachtendriehoek gevolgd, maar jouw benadering is denk ik ook juist!


#7

Michel Uphoff

    Michel Uphoff


  • >5k berichten
  • 6472 berichten
  • Moderator

Geplaatst op 21 januari 2018 - 14:37

@Dirk B: Jij berekende het als volgt?

Omtrek bout (pi * buitendiameter = 43,98 mm) en spoed (1,5 mm) geven een rechthoekige driehoek.

Benodigde kracht aan buitenomtrek bout is dan 1,5/43,98 * 22000N = 750,3 N (op r bout = 0,007 meter).

Benodigd koppel is dan 0,007 m * 750,3 N = 5,25 Nm.

 

@AWeeda: Die wrijving is toch wel een dingetje. Er is een behoorlijke variatie tussen diverse tabellen te vinden. Hier wat nadere informatie toegespitst op schroefverbindingen.

Motus inter corpora relativus tantum est.

#8

AWeeda

    AWeeda


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 21 januari 2018 - 19:40

Allen,

 

Zeer bedankt voor jullie reacties en berekeningen.

 

De uitkomst echter, nl. 5-6NM komt als zeer laag op me over. 600 gram druk op een hefboom van 1 meter kan toch geen kracht/druk van 22000 Newton opleveren?

 

Ik stuitte nog op een formule:

T = d * F * K

 

T = Aanhaalmoment in NewtonMeters

d = Boutdiameter in Meters

F = Voorspanning in Newton

K = Wrijvingscoefficient

 

Als ik dit invul dan kom ik op:

T = 0,014 * 22000 * 0,2

T = 61,6NM

 

Bij een wrijvingscoeffiecient van 0,3 zou dat zelfs 92,4NM zijn.

Dit getal past wel wat beter bij het gevoel...

 

Kan het zijn dat de bovenstaande berekeningen een factor 10 mis zijn?


#9

Michel Uphoff

    Michel Uphoff


  • >5k berichten
  • 6472 berichten
  • Moderator

Geplaatst op 21 januari 2018 - 19:54

Ik stuitte nog op een formule: T = d * F * K

 

Dat moet een onvolledige formule zijn, aangezien de spoed (en die bepaalt de hellingshoek) er niet in is opgenomen. Bovendien, als je dit uitrekent zonder wrijving is K 0, wat tot een koppel van 0 Nm leidt.

 

Je hebt een M14 bout met fijne draad. Ik kom niet op een andere waarde. Bij droog staal is de wrijving ongeveer 0,8. Dan zou je op ongeveer 1,8*5,25 = 9,5 Nm uitkomen, maar dat is wel zo ongeveer het maximum.

Motus inter corpora relativus tantum est.

#10

AWeeda

    AWeeda


  • 0 - 25 berichten
  • 5 berichten
  • Gebruiker

Geplaatst op 21 januari 2018 - 20:11

Goed punt. Het ontbreken van de spoed had ik over het hoofd gezien.

 

Allen nogmaals dank!


#11

Dirk B

    Dirk B


  • >100 berichten
  • 138 berichten
  • Ervaren gebruiker

Geplaatst op 21 januari 2018 - 20:24

@ Michel Uphoff:

Klopt, dat is mijn manier van berekenen, met dien verstande dat ik Rbout de helft van de flankdiameter heb ingevuld.
Voor de flankdiameter heb ik 12 mm genomen, maar afgerond komt het uit op 5,25 Nm zonder wrijving.
Inderdaad is die wrijving een dingetje!
Ik realiseer me dat we dat dan ook anders moeten zien:

Bij een wrijvingscoëfficiënt van 0,3 is een schuifkracht nodig van 0,3 x 22000 = 6600 N
Deze schuifkracht werkt in het ringvormige drukvlak van de moer.
Bij een sleutelwijdte van 22 mm dus op gemiddelde straal van 9 mm = 0,009 m
Benodigd moment hiervoor dus 6600 x 0,009 = 59,4 Nm
Gecombineerd met het aanhaal moment zonder wrijving dus totaal 64,6 Nm
 


#12

Michel Uphoff

    Michel Uphoff


  • >5k berichten
  • 6472 berichten
  • Moderator

Geplaatst op 21 januari 2018 - 20:51

Dan is de wrijving geen dingetje meer maar een ding. Het aanhaalmoment wordt daar dan vrijwel volledig door bepaald. En aangezien de coëfficiënt sterk varieert, weet je dus vrijwel niet tot welke klemkracht je komt. Moet je dan ook niet de wrijving op de schroefdraadflanken in rekening brengen?

Motus inter corpora relativus tantum est.

#13

Dirk B

    Dirk B


  • >100 berichten
  • 138 berichten
  • Ervaren gebruiker

Geplaatst op 21 januari 2018 - 21:06

Daar heb je volkomen gelijk in Michel:

 

Als we wrijving op de schroefdraad flanken mee rekenen komen we op 104,2 Nm, echter doordat het flankoppervlak beduidend kleiner is, is denk ik ook de wrijvings coëfficiënt hier lager.

De waarheid zal wel ergens in het midden liggen en dan komt de gevonden waarde van Aweeda weer in beeld.


#14

Michel Uphoff

    Michel Uphoff


  • >5k berichten
  • 6472 berichten
  • Moderator

Geplaatst op 21 januari 2018 - 21:34

Wellicht, hoewel de daar gegeven formule m.i. nergens op slaat.

 

Maar die calculator geeft vergelijkbare waarden (124 Nm bij 44 kN, 2 mm spoed en 0,15 wrijving) dus die 64 Nm lijkt wel in de goede richting te zitten. Daar komen ze tot een vrijwel gelijke wrijvingsweerstand door kop en draadflank.

 

Op het moment dat de wrijvingscoëfficiënt verdubbelt, verdubbelt echter ook het aanhaalmoment. En die wrijving lijkt in de praktijk ergens tussen 0,15 en 0,8 te liggen, dat is nog eens een verschil.

 

M.i. is er dan alleen wat zinnigs te berekenen als de wrijving echt nauwkeurig bekend is.

Motus inter corpora relativus tantum est.

#15

Dirk B

    Dirk B


  • >100 berichten
  • 138 berichten
  • Ervaren gebruiker

Geplaatst op 21 januari 2018 - 22:42

Inderdaad, de daar gegeven formule is denk slechts een deel van een meer omvattende rekenmethodiek.

 

En zal de betrouwbaarheid van de berekening in hoge mate afhangen van de nauwkeurigheid van de toegepaste wrijving coëfficiënt.






0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures