Springen naar inhoud

Differentiaalvergelijkingen


  • Log in om te kunnen reageren

#1

Physics

    Physics


  • >25 berichten
  • 89 berichten
  • Ervaren gebruiker

Geplaatst op 21 maart 2007 - 19:55

Ik ben op dit moment bezig met een klein onderzoek waarbij ik het verschijnsel van de aangedreven gedempte harmonische oscillator onderzoek aan de hand van een electronische schakeling, opgebouwd uit een weerstand, een condensator en een spoel. Hieronder staat de schakeling die we gaan bekijken:

Geplaatste afbeelding

Het gedrag van een dergelijke schakeling kan worden beschreven met behulp van een stelsel differentiaalvergelijkingen. Om te zien hoe dit in z'n werk gaat bekijken we eerst de verschillende componenten afzonderlijk.

1) Bij een weerstand is er een erg eenvoudig verband tussen de stroom I(t) die op tijdstip t door de weerstand loopt en de spanning V(t) over de weerstand; volgens de wet van Ohm geldt: V(t) = I(t) R, waarbij R de weerstand van de weerstand is.

2) Bij een condensator geldt: V(t) C = I(t), waarbij V(t) de spanning over de condensator is, en I(t) de stroom die door de condensator loopt. De constante C is de capaciteit van de condensator.

3) Bij een spoel tenslotte geldt: V(t) = I(t) L, waarbij I(t) en V(t) de stroom door de spoel en de spanning over de spoel aangeven en L staat voor de impedantie van de spoel.

We bekijken nu de schakeling die hierboven is afgebeeld, bestaande uit een weerstand R, en, parallel geschakeld, een condensator met capaciteit C en een spoel met impedantie L. De condensator en de spoel worden geaard, de weerstand wordt aangesloten op een spanningsbron die een spanning V0=V0(t) levert. In het, in de afbeelding aangegeven, knooppunt meet men de spanning V=V(t).

Door de weerstand loopt een stroom I, door de condensator een stroom I1 en door de spoel een stroom I2. Er geldt:

(*1*) I(t) = ( V0(t) - V(t) ) / R
(*2*) I1(t) = V(t) C
(*3*) I2(t) = V(t) / L
(*3*) I(t) = I1(t) + I2(t)


Dit is zo'n beetje het inleidende verhaal. Ik heb een aantal vragen, waar ik niet helemaal uitkom. Ik hoop dat het met behulp van dit forum wel lukt.

vraag 1: Ik wil graag vergelijking (*2*) differentiŽren.
vraag 2: Ik wil graag laten zien met behulp van de vergelijkingen (*1*-*4*) dat V(t) voldoet aan de differentiaalvergelijking:
(d^2)V / dt^2 + (1/(RC)) (dV / dt) + (1/(LC) V = (1/(RC)) (dV0 / dt).

Alvast bedankt!

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

EvilBro

    EvilBro


  • >5k berichten
  • 6765 berichten
  • VIP

Geplaatst op 21 maart 2007 - 21:17

2) Bij een condensator geldt: V(t) C = I(t)

Nee, voor een condensator geldt:
LaTeX

Bij een spoel tenslotte geldt: V(t) = I(t) L

Nee, er geldt:
LaTeX

#3

Physics

    Physics


  • >25 berichten
  • 89 berichten
  • Ervaren gebruiker

Geplaatst op 22 maart 2007 - 11:11

In mijn onderzoek gelden de formules, zoals ik die heb genoemd. Die zijn gegeven en daar dien ik dus ook mee te werken. Het gaat hier namelijk om het rekenen met differentiaalvergelijkingen en niet om de werkelijkheid. Kun je evenwel de oplossingen geven?

Veranderd door Physics, 22 maart 2007 - 11:12


#4

EvilBro

    EvilBro


  • >5k berichten
  • 6765 berichten
  • VIP

Geplaatst op 22 maart 2007 - 11:50

In mijn onderzoek gelden de formules, zoals ik die heb genoemd.

Je onderzoek bevindt zich niet in dit universum? Laat ik extra duidelijk zijn: de formules die je noemt zijn fout.

Die zijn gegeven

Dan zou ik bij diegene die ze gegeven heeft eens te raden gaan of dit wel de bedoeling is.

Het gaat hier namelijk om het rekenen met differentiaalvergelijkingen en niet om de werkelijkheid.

Als dit laatste daadwerkelijk de bedoeling zou zijn, waarom wordt er dan een link gelegd met een bestaande werkelijke situatie terwijl die link niet klopt in werkelijkheid?

Kun je evenwel de oplossingen geven?

Kan ik doen, maar ga ik 'nu' nog niet doen. Als je namelijk de formules die ik gegeven hebt gebruikt dan kun je namelijk wel aantonen dat het antwoord op vraag 2 klopt (iets dat nu onmogelijk is).

#5

Physics

    Physics


  • >25 berichten
  • 89 berichten
  • Ervaren gebruiker

Geplaatst op 22 maart 2007 - 23:37

Ik kom er met mijn formules inderdaad niet uit, dus ik ga ervan uit dat de formulus, zoals EvilBro die heeft opgesteld, wel kloppen en ben dus ook benieuwd hoe hij tot de betreffende differentiaalvergelijking komt...

#6

EvilBro

    EvilBro


  • >5k berichten
  • 6765 berichten
  • VIP

Geplaatst op 23 maart 2007 - 06:31

(1) LaTeX
(2) LaTeX
(3) LaTeX
(4) LaTeX
Formule 1 en 2 in formule 4 substitueren:
LaTeX
Geheel differentieren naar LaTeX . Daarin zal dus de afgeleide van LaTeX zitten. Deze vervangen door formule 3. Nu alle V's nog even naar 1 kant schrijven.

#7

Physics

    Physics


  • >25 berichten
  • 89 berichten
  • Ervaren gebruiker

Geplaatst op 23 maart 2007 - 13:47

Oke, dat is duidelijk! Mooi zo.

We bekijken nu onderstaande schakeling waarin een weerstand, een condensator een spoel in serie zijn geschakeld.

Geplaatste afbeelding

De spoel wordt geaard en de weerstand wordt aangesloten op een spanningsbron met spanning V0 = V0(t). De spanning over de weestand geven we aan met V1-V0 en die over de spoel met V2. Door onze schakeling loopt een stroom I = I(t) en er geldt

(*6*) I(t) = (V0(t)-V1(t)) / R
(*7*) I(t) = (V1(t)-V2(t)) C
(*8*) I(t) = V2(t) / L

De spanningen V1 en V2 voldoen aan een stelsel differentiaalvergelijkingen van de vorm

(*9*) V1(t) = -(R V2(t)) / L) + V0(t)
(*10*) V2(t) = V1(t) + A(V1(t)) - V0(t)

Hoe kan ik met behulp van de stellingen 6-8 de waarde van A bepalen?

Veranderd door Physics, 23 maart 2007 - 13:48


#8

EvilBro

    EvilBro


  • >5k berichten
  • 6765 berichten
  • VIP

Geplaatst op 24 maart 2007 - 20:08

Sorry voor de late reactie, maar mijn kabelinternet deed stom. [rr]

(*7*) I(t) = (V1(t)-V2(t)) C
(*8*) I(t) = V2(t) / L

Deze formules kloppen (natuurlijk) weer niet. Zoals al eerder gezegd geldt voor een condensator (Ic is de stroom door de condensator en Vc de spanning over de condensator):
LaTeX
en voor een spoel:
LaTeX

De spanningen V1 en V2 voldoen aan een stelsel differentiaalvergelijkingen van de vorm

Hoezo 'differentiaalvergelijkingen'? Misschien is het handig als je eerst eens bekijkt wat een differentiaalvergelijking is (bijvoorbeeld hier).

Veranderd door EvilBro, 24 maart 2007 - 20:09


#9

Physics

    Physics


  • >25 berichten
  • 89 berichten
  • Ervaren gebruiker

Geplaatst op 24 maart 2007 - 21:28

Pfff... Ik heb een hele domme fout gemaakt. Sorry voor alle onduidelijkheid. Ik heb de punten boven de symbolen over het hoofd gezien. :-( Die punten staan dus voor de afgeleide :smile: Hopelijk kun je nu verder met mijn vraag. Wat dom zeg ('t waren ook zulke kleine lettertjes [rr] )

#10

Physics

    Physics


  • >25 berichten
  • 89 berichten
  • Ervaren gebruiker

Geplaatst op 24 maart 2007 - 21:50

Nog even de goede vraag nu :-D :

We bekijken nu onderstaande schakeling waarin een weerstand, een condensator een spoel in serie zijn geschakeld.

Geplaatste afbeelding

De spoel wordt geaard en de weerstand wordt aangesloten op een spanningsbron met spanning V0 = V0(t). De spanning over de weestand geven we aan met V1-V0 en die over de spoel met V2. Door onze schakeling loopt een stroom I = I(t) en er geldt

(*6*) I(t) = (V0(t)-V1(t)) / R
(*7*) I(t) = (V1'(t)-V2'(t)) C
(*8*) I'(t) = V2(t) / L

De spanningen V1 en V2 voldoen aan een stelsel differentiaalvergelijkingen van de vorm

(*9*) V1'(t) = -(R V2(t)) / L) + V0'(t)
(*10*) V2'(t) = V1'(t) + A(V1(t)) - V0(t)

Hoe kan ik met behulp van de stellingen 6-8 de waarde van A bepalen?

#11

EvilBro

    EvilBro


  • >5k berichten
  • 6765 berichten
  • VIP

Geplaatst op 24 maart 2007 - 23:15

Hoe kan ik met behulp van de stellingen 6-8 de waarde van A bepalen?

De stroom door de weerstand is gelijk aan de stroom door de condensator.

#12

Physics

    Physics


  • >25 berichten
  • 89 berichten
  • Ervaren gebruiker

Geplaatst op 26 maart 2007 - 08:32

De stroom door de weerstand is gelijk aan de stroom door de condensator.


Ik ben al even aan het rekenen geweest, maar ik begrijp niet hoe je A eruit kunt halen. Er komen zulke ellendig lange antwoorden uit... :)

#13

EvilBro

    EvilBro


  • >5k berichten
  • 6765 berichten
  • VIP

Geplaatst op 26 maart 2007 - 08:59

Ik ben al even aan het rekenen geweest, maar ik begrijp niet hoe je A eruit kunt halen. Er komen zulke ellendig lange antwoorden uit... :)

Schrijf eens op met welke vergelijking je begint (dan kan ik zien of je op de goede weg zit).

#14

Physics

    Physics


  • >25 berichten
  • 89 berichten
  • Ervaren gebruiker

Geplaatst op 26 maart 2007 - 09:07

Tja, als de stroom in beide gevallen gelijk is, moeten die beide vergelijkingen dus aan elkaar gelijk zijn... Maar ik zie het nut daarvan niet in. Verder lijkt het me verstandig om vergelijkingen om te schrijven en in te vullen in (*10*), zodat A overblijft. Maar het probleem is dat er steeds een functie uitkomt die afhankelijk is van t en dat lijkt me geen constante :-(

#15

EvilBro

    EvilBro


  • >5k berichten
  • 6765 berichten
  • VIP

Geplaatst op 26 maart 2007 - 09:14

... die beide vergelijkingen ...

Welke "beide vergelijkingen"?





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures