Newton's Law of cooling

Moderator: physicalattraction

Reageer
Gebruikersavatar
Berichten: 1.678

Newton's Law of cooling

Newton's Law of cooling1.png
Newton's Law of cooling1.png (10.42 KiB) 708 keer bekeken
Wel realistischer dan een constante kamertemperatuur maar nu een stuk lastiger op te lossen
Met name moeite om T2(t) te vinden uit de DE..
Newton's Law of cooling.png
Newton's Law of cooling.png (21.05 KiB) 708 keer bekeken

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.
Gebruikersavatar
Pluimdrager
Berichten: 2.179

Re: Newton's Law of cooling

Het duurt oneindig lang tot een object afgekoeld is tot de kamertemperatuur, ongeacht of die kamertemperatuur constant is of langzaam oploopt.

Gebruikersavatar
Berichten: 1.678

Re: Newton's Law of cooling

Ik snap je gedachte....maar ik hou m'n twijfels hierover bij een toenemende omgevingstemperatuur.
Ik denk dat er wel een moment in de tijd is waarbij de temperaturen gelijk zijn,om daarna gezamenlijk weer af te nemen.

Gebruikersavatar
Pluimdrager
Berichten: 2.179

Re: Newton's Law of cooling

Als T1 constant is duurt het oneindig lang.

In mijn eerste gedachte nam T1 toe door de afgestane warmte van het object, maar ik realiseer me nu dat dat niet is wat er staat.

Als T1 toe blijft nemen, om wat voor reden dan ook, zullen T2 en T1 toch ergens in de tijd gelijk kunnen worden, waarna T2 weer gaat stijgen door opwarming vanuit T1. T2 zal dan telkens iets lager zijn dan T1 omdat de warmte daarna van T1 naar T2 stroomt.

De grafiek is niet juist.
De rode lijn zal de x-as asymptotisch naderen maar nooit raken.
De zwarte lijn zal de groene lijn ergens in de tijd snijden, er iets onder duiken en daarna iets onder de groene lijn blijven lopen.

Gebruikersavatar
Berichten: 1.678

Re: Newton's Law of cooling

Ik zie nu dat je gelijk hebt (goed verhaal) betreffende het verloop van beide temperaturen.
Resteert het uitzoeken van het tijdstip waarop T2=T1

Gebruikersavatar
Berichten: 1.678

Re: Newton's Law of cooling

Is dit eigenlijk relevant?
"In mijn eerste gedachte nam T1 toe door de afgestane warmte van het object, maar ik realiseer me nu dat dat niet is wat er staat."

Gebruikersavatar
Berichten: 1.330

Re: Newton's Law of cooling

ukster schreef:
ma 17 jun 2019, 00:06
Is dit eigenlijk relevant?
"In mijn eerste gedachte nam T1 toe door de afgestane warmte van het object, maar ik realiseer me nu dat dat niet is wat er staat."
Lijkt me wel. Met die (eerste) aanname kruipen de temperaturen naar elkaar toe maar worden nooit (exact) gelijk.

Wat stelt die dempingsfactor precies voor? Is dat de constante in de e-macht, exp(-k.t) ?

Gebruikersavatar
Berichten: 1.330

Re: Newton's Law of cooling

De differentiaalvergelijking wordt

\(\frac{dT_2}{dt}=k.(T_1+\beta.t-T_2)\)

Wolfram Alpha geeft als oplossing

\(T_2=-\frac{\beta}{k}+c.e^{-k.t}+\beta.t+T_1\)

c is dan
\(c=T_{2,0}+\frac{\beta}{k}-T_{1,0}\)

De temperaturen zijn gelijk als

\(-\frac{\beta}{k}+c.e^{-k.t}+\beta.t=0\)

Dat is bij t≈20,5 minuut.


Gebruikersavatar
Berichten: 1.678

Re: Newton's Law of cooling

Dat heb je dan rap gevonden met Wolfram Alpha!
1.Stel dat de temperatuurtoename in de kamer het rechtstreekse gevolg is van de afgestane warmte van het object,geldt deze oplossing dan niet?
2. ik heb hier zomaar een k=1/6min^-1 aangenomen.
3. Uitgaande van k=αA/mc kom ik voor een massief stalen bol met straal 5cm uit op k=7,7.10^-5 [sec^-1]
(warmteoverdrachtcoefficient α=5 [W/m^2K] ,voor stilstaande lucht)
Dan zou na 2 uur en 8min de temperaturen aan elkaar gelijk zijn.
Niet eens zo gek lijkt me voor zo'n hete massieve stalen bal van dit formaat.
Alhoewel ,dan is de equilibriumtemperatuur opgelopen tot 276°C
Kennelijk zal de factor β veel lager dan 2°C/min zijn.

Gebruikersavatar
Berichten: 1.678

Re: Newton's Law of cooling

met β=0,0001°C/sec kom ik uit op 20uur en 12 min T(=27,3°C)

Gebruikersavatar
Berichten: 1.330

Re: Newton's Law of cooling

1. Dan kruipen de temperaturen naar elkaar toe met een snelheid die evenredig is met het temperatuurverschil. Dat betekent dat ze nooit exact gelijk worden (net als bij het ontladen van een condensator over een weerstand: De spanning wordt nooit exact nul).

3. Ook hier lijkt het me dat de temperaturen nooit precies aan elkaar gelijk worden. Of laat je hier ook de omgevingstemperatuur lineair toenemen in de tijd?

Gebruikersavatar
Berichten: 1.330

Re: Newton's Law of cooling

Als opwarming van de omgeving (kamer) wordt veroorzaakt door het warme voorwerp dat er wordt neergezet, dan neemt de temperatuur van het voorwerp exponentieel af, die van de kamer exponentieel toe.

Gebruikersavatar
Berichten: 1.678

Re: Newton's Law of cooling

Dus om de berekening geen geweld aan te doen moet worden veronderstelt dat de toename in kamertemperatuur niet het gevolg is van de gegenereerde warmte van het object ,maar anderzins is veroorzaakt? in dit geval een lineaire stijging

Gebruikersavatar
Berichten: 1.330

Re: Newton's Law of cooling

Yep, anders krijg je die temperaturen nooit gelijk.

Als ik het goed heb is jouw richting elektriciteit/elektronica.

Je kunt dit probleem dan vertalen naar een schakeling met twee condensatoren, beide met één aansluiting aan de nul. Tussen de andere aansluitingen zit een weerstand.

Capaciteiten komen overeen met warmtecapaciteit voorwerp en warmtecapaciteit kamer. De weerstand met de warmteweerstand.

De tijdconstante τ is dan R.C, met C de capaciteit van de serieschakeling van de twee condensatoren 1/(1/C1+1/C2)

De spanning over de weerstand is dan a.exp(-t/τ) met a de spanning op t=0.

Reageer