Hydrometer

Moderator: physicalattraction

Gebruikersavatar
Berichten: 608

Hydrometer

Een heel eenvoudige oefening op Archimedes, maar ik kom niet op die oplossing :?
Image 1.jpg

Gebruikersavatar
Moderator
Berichten: 7.057

Re: Hydrometer

Logisch, want die oplossing is fout. Dat is al te zien aan de dimensies.

Ik kom op \(\rho_v=\frac{m}{\frac{m}{\rho_w}-\frac{\pi D^2}{4}\Delta h}\)

Gebruikersavatar
Berichten: 608

Re: Hydrometer

Dat kom ik ook uit.

Berichten: 2.251

Re: Hydrometer

wnvl1 schreef: di 30 nov 2021, 20:03 Dat kom ik ook uit.
Ik mis nog het volume van de drijver.

Gebruikersavatar
Moderator
Berichten: 7.057

Re: Hydrometer

HansH schreef: di 30 nov 2021, 22:22 Ik mis nog het volume van de drijver.
Die heb je niet nodig.

Berichten: 2.251

Re: Hydrometer

volgens mij geeft het volume van de drijver een opwaartse kracht evenredig met het product van volume en dichtheid en dat wordt gecompenseerd door het stukje volume van het buisje wat iets meer of minder boven de vloeistof uitsteekt. dus zowel diameter van het buisje als volume van de drijver moeten in de formule voorkomen.

Berichten: 2.251

Re: Hydrometer

Ik heb zelf zo'n hydrometer voor bierbrouwen met de volgende gegevens: d=7.5mm, m=28 gram, volume=28ml tot SG=1000
dat even qua formules afgeleid om te zien of het klopt.
en klopt precies met de schaalverdeling van SG=1000 tot SG=1150 over 8.2 cm
hydrometer.pdf
(420.34 KiB) 12 keer gedownload

Gebruikersavatar
Moderator
Berichten: 7.057

Re: Hydrometer

Je kunt jouw formule makkelijk omzetten zodat het volume eruit valt.

Berichten: 2.251

Re: Hydrometer

Xilvo schreef: wo 01 dec 2021, 10:12 Je kunt jouw formule makkelijk omzetten zodat het volume eruit valt.
Laat maar zien dan als dat voor jou zo gemakkelijk is. Als ik een groter volume neem dan wordt bij dezelfde diameter van de buis de gevoeligheid immers groter, Dus krijg je een grotere delta h voor dezelfde delta dichtheid.

Gebruikersavatar
Moderator
Berichten: 7.057

Re: Hydrometer

\(F_w=g \rho_w V_w=mg=F_v=g \rho_v(V_w-\frac{\pi D^2}{4}\Delta h)\)

\(\rho_v(V_w-\frac{\pi D^2}{4}\Delta h)=m\)

\(V_w=\frac{m}{\rho_w}\)

\(\rho_v=\frac{m}{\frac{m}{\rho_w}-\frac{\pi D^2}{4}\Delta h}\)

Berichten: 2.251

Re: Hydrometer

punt is dat m een constante lijkt, maar is in werkelijkheid gekoppeld aan het volume van de drijver om ervoor te zorgen daqt het ding bij dichtheid 1000 een bepaald volume onder de vloeistof heeft liggen. dus m is een functie van het volume. Daar zit jouw denkfout.
hydrometer.gif
hydrometer.gif (5.82 KiB) 675 keer bekeken

Gebruikersavatar
Moderator
Berichten: 7.057

Re: Hydrometer

m is de totale massa van de drijver en is een gegeven constante waarde.
Daar zit jouw denkfout.

Berichten: 2.251

Re: Hydrometer

maak maar eens zo'n drijver met een gekozen massa, bv 30 gram en een gekozen diameter bv 7.5 mm en kijk dan maar eens welke vrijheidsgraden je nog over hebt om het ding in water op een bepaalde positie op de dunne buis te laten zitten. Je kunt dat maar realiseren met slechts 1 volume. Dus als je een massa kiest ligt het volume ook vast.

Berichten: 2.251

Re: Hydrometer

of zijn we nu bezig om op 2 verschillende golflengtes te communiceren en rondjes te draaien terwijl we hetzelfde zeggen?

Gebruikersavatar
Moderator
Berichten: 7.057

Re: Hydrometer

HansH schreef: wo 01 dec 2021, 12:55 of zijn we nu bezig om op 2 verschillende golflengtes te communiceren en rondjes te draaien terwijl we hetzelfde zeggen?
Ik vermoed het. Natuurlijk hangt de massa af van wat je wil dat hij aanwijst in water. Maar daarna verander je die massa niet meer als je een andere dichtheid wil meten.

Reageer