Waaraan is f(x)dx gelijk?

Moderators: dirkwb, Drieske

Reageer
Berichten: 4

Waaraan is f(x)dx gelijk?

Stel ik heb f(x) = x2. Hoe ziet dan f(x)dx eruit?

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.
Gebruikersavatar
Berichten: 2.529

Re: Waaraan is f(x)dx gelijk?

AdvanderVen schreef:
do 20 jun 2019, 11:18
Stel ik heb f(x) = x2. Hoe ziet dan f(x)dx eruit?
x2dx

Gebruikersavatar
Berichten: 24.466

Re: Waaraan is f(x)dx gelijk?

Wat is de context van je vraag?

Berichten: 4

Re: Waaraan is f(x)dx gelijk?

Als
$$g(x) = \frac{\lambda}{(\lambda x+1)^2}$$
en
$$
f_\alpha(x) = \frac{\alpha}{(x+1)^{\alpha+1}}
$$
Dan kun je als volgt f van g krijgen,
$$
f_1(x)dx = \frac{1}{(x+1)^2}dx = \frac{\lambda d\tilde{x}}{(\lambda \tilde{x}+1)^2} = g(\tilde{x})d\tilde{x}
$$
waarbi de substitutie $$x = \lambda\tilde{x}$$ is gebruikt. Maar ik begrijp de gelijkheden niet.

Gebruikersavatar
Berichten: 24.466

Re: Waaraan is f(x)dx gelijk?

Welke begrijp je niet? In de ketting van drie is de eerste gewoon de definitie van f gebruiken en de laatste die van g gebruiken. Voor de middelste, gebruik de gegeven substitutie \(x = \lambda\tilde{x}\) en er volgt:

\(\frac{1}{(x+1)^2}dx = \frac{1}{(\lambda\tilde{x}+1)^2}d\left(\lambda\tilde{x}\right) = \frac{\lambda}{(\lambda \tilde{x}+1)^2} d\tilde{x}\)

omdat \(d\left(\lambda\tilde{x}\right)=\lambda d\tilde{x}\).

Berichten: 4

Re: Waaraan is f(x)dx gelijk?

In de ketting van de drie
$$
\frac{1}{(x+1)^2}dx = \frac{\lambda d\tilde{x}}{(\lambda \tilde{x}+1)^2} = g(\tilde{x})d\tilde{x}
$$
begrijp ik de overgang van de eerste naar de tweede. Het is een kwestie van substitutie. In de overgang van de tweede naar de derde begrijp ik het nu ook vanwege de regel die je me gegeven hebt en die ik me niet realizeerde.

Nu zijn
$$f(x) = \frac{\alpha}{((x+1)^{\alpha+1})}$$
en
$$g(x) = \frac{\lambda}{(\lambda x+1)^2}$$
kansdichtheidsfuncties en je kunt dus f(x) krijgen door g(x) te herschalen. Nu is f(x) een speciaal geval van een Pareto verdeling, Blijft het dan ook interessant om g(x) als een aparte verdeling te beschouwen? Het is net zoiets als bij de logistische verdeling en de log-logistische verdeling. De éne is een herscahling van de ander, maar toch worden beide verdelingen als aparte verdelingen beschouwd.

Berichten: 4

Re: Waaraan is f(x)dx gelijk?

Dankzij uw hulp heb ik inmiddels ontdekt dat de dichtheidsfunctie
$$
\frac{\lambda}{(\lambda x + 1)^2}
$$
verkregen kan worden middels een Pareto Type II verdeling

https://en.wikipedia.org/wiki/Pareto_distribution

oftewel Lomax verdeling:

https://en.wikipedia.org/wiki/Lomax_distribution

De Lomax verdeling heeft als dichtheidsfunctie
$$
\frac{\alpha}{\lambda}\frac{1}{(1+\frac{x}{\lambda})^{\alpha+1}}
$$
Voor $$\alpha = 1$$ en $$\lambda = 1$$ krijg je
$$\frac{1}{(1+x)^2}$$
en als je dan x herschaalt met $$\lambda x$$ krijg je de gevraagde verdeling.

Reageer