Primitieve sin x / x^2 + 1

Moderator: dirkwb

Reageer
Berichten: 12

Primitieve sin x / x^2 + 1

Ik ben nog wat nieuw in de substitutie enz, en het komt nog niet echt aan wat ik hier mee zou kunnen doen om de primitieve te vinden.
Het gaat om ∫ sinx / (x^2+1) [0,2] en ik wil graag leren hoe ik dit kan oplossen.

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.
Gebruikersavatar
Pluimdrager
Berichten: 3.302

Re: Primitieve sin x / x^2 + 1

Weet je zeker dat het
\(\int_0^2\frac{\sin x}{x^2+1}dx\)
moet zijn? Als ik de onbepaalde integraal in symbolab ingeef krijg ik een uitkomst die naast een machtreeksontwikkeling in x een uitdrukking met de integraalsinus van x, wat een niet-elementaire functie is.
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel

Berichten: 364

Re: Primitieve sin x / x^2 + 1

Dat wil ik ook wel leren :P

Maar ff serieus: users zouden bronverwijzingen moeten geven bij dit soort opgaven: welk boek? En de context: wat voor opleiding?

Nu staren mensen zich blind op wat waarschijnlijk een typfout is.

Berichten: 12

Re: Primitieve sin x / x^2 + 1

mathfreak schreef:
za 30 nov 2019, 19:04
Weet je zeker dat het
\(\int_0^2\frac{\sin x}{x^2+1}dx\)
moet zijn? Als ik de onbepaalde integraal in symbolab ingeef krijg ik een uitkomst die naast een machtreeksontwikkeling in x een uitdrukking met de integraalsinus van x, wat een niet-elementaire functie is.
Het klopt inderdaad (het is geen typefout).
Ik heb er gisteravond nog een tijdje naar gekeken. Maar gezien de andere opgaven -ook die met substitutie- mij gemakkelijk af gaan en deze me alleen maar een paar kladblaadjes doet verscheuren, ga ik er voor nu even van uit dat het van de cursusleider een foutje moet zijn.

Reageer