Formule van Cramer

Moderators: dirkwb, Drieske

Reageer
Gebruikersavatar
Berichten: 1.247

Formule van Cramer

Hoi!
 
In mijn boek staat het volgende, betreffende de formule van Cramer:
 
"Deze formule is wel van belang omdat we ermee inzien dat de coördinaten van xi van de oplossing te schrijven zijn als quotiënten van veeltermuitdrukkingen in de coëfficiënten en rechterleden van het stelsel."
 
Ik snap niet wat ze hiermee bedoelen?
 
Zie ook mijn boek (excuses voor de slechte kwaliteit):
 
15319583_10208114348196793_1918064428_n.jpg
15319583_10208114348196793_1918064428_n.jpg (65.27 KiB) 57 keer bekeken

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.
Gebruikersavatar
Pluimdrager
Berichten: 3.301

Re: Formule van Cramer

Pas de regel van Cramer eens toe voor een stelsel van 2 vergelijkingen met 2 onbekenden. Misschien wordt je zo duidelijk wat er dan precies met die opmerking bedoeld wordt.
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel

Gebruikersavatar
Berichten: 1.247

Re: Formule van Cramer

Ahh, ja, het had meer te maken met de betekenis van sommige woorden. Ze bedoelen met
 
"veelterm-uitdrukkingen in coëfficiënten en rechterleden van het stelsel"
 
gewoon dat je de coëfficiënten en rechterleden van het stelsel schrijft als een polynoom (een veelterm-uitdrukking). En hier neem je dus een zekere quotiënt van voor je oplossingscoördinaat.
 
Ja, ja, ik zie het. Dank je.

Reageer