[wiskunde] Taylorreeks

Moderators: ArcherBarry, Drieske, Fuzzwood

Berichten: 28

Taylorreeks

Beste,
 
Ik snap niet goed waarom de convergentie reeks 0 is, want als ik het principe van d' Alembert toepas dan kom ik (oneindig.X) uit, hoe kan je hieruit dan afleiden dat het 0 zou moeten zijn?
 
Alvast bedankt  :D
 

Bepaal het convergentiegebied van de volgende Taylorreeksen:
 

 
Bijlagen
Schermafbeelding 2019-05-22 om 15.08.47.png
Schermafbeelding 2019-05-22 om 15.08.47.png (11.92 KiB) 230 keer bekeken

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.
Gebruikersavatar
Berichten: 1.970

Re: Taylorreeks

Kun je de complete originele opgave laten zien? Dit ziet er niet uit als een Taylorreeks.

Berichten: 28

Re: Taylorreeks

Xilvo schreef:Kun je de complete originele opgave laten zien? Dit ziet er niet uit als een Taylorreeks.
 tuurlijk  :)
Bijlagen
Schermafbeelding 2019-05-22 om 15.56.25.png
Schermafbeelding 2019-05-22 om 15.56.25.png (86.46 KiB) 228 keer bekeken

Gebruikersavatar
Berichten: 1.970

Re: Taylorreeks

Het gaat blijkbaar om reeks nummer vier. 
 
Bedoel je met
 
Annelies687 schreef: Ik snap niet goed waarom de convergentie reeks 0 is, want als ik het principe van d' Alembert toepas dan kom ik (oneindig.X) uit, hoe kan je hieruit dan afleiden dat het 0 zou moeten zijn?
dat de reeks alleen convergeert voor x=0?
 
Voor andere waardes convergeert hij niet.

Gebruikersavatar
Berichten: 2.710

Re: Taylorreeks

Xilvo schreef: Het gaat blijkbaar om reeks nummer vier. 
 
Bedoel je met
 
dat de reeks alleen convergeert voor x=0?
 
Voor andere waardes convergeert hij niet.
Ik denk dat daar toch wel een klein bewijs bij hoort.
In de wiskunde zijn er geen Koninklijke wegen Majesteit.

Gebruikersavatar
Berichten: 1.970

Re: Taylorreeks

Met d'Alembert.
 
Maar dat hoef ik niet voor te doen, als ik het goed begrijp heeft Annelies687 die methode zelf al gebruikt.

Berichten: 28

Re: Taylorreeks

Het model antwoord is (Convergentiegebied: {0}) maar ik kom uit dat het divergeert 
(x onder limiet moet n zijn)
Bijlagen
60594525_426574958074822_5409721277378199552_n.jpg
60594525_426574958074822_5409721277378199552_n.jpg (115.84 KiB) 228 keer bekeken

Gebruikersavatar
Berichten: 2.710

Re: Taylorreeks

Xilvo schreef: Met d'Alembert.
 
Maar dat hoef ik niet voor te doen, als ik het goed begrijp heeft Annelies687 die methode zelf al gebruikt.
Ah ja.
Ik dacht iets te hebben zonder zo'n kenmerk, maar dat is mosterd na de maaltijd.
Als x=0 bestaat de eerste vorm niet.
In de wiskunde zijn er geen Koninklijke wegen Majesteit.


Gebruikersavatar
Berichten: 1.970

Re: Taylorreeks

Je komt uit dat het divergeert, meen ik te lezen?  :D
 
Ook voor x=0? Waarom? 

Berichten: 28

Re: Taylorreeks

Xilvo schreef: Met d'Alembert.
 
Maar dat hoef ik niet voor te doen, als ik het goed begrijp heeft Annelies687 die methode zelf al gebruikt.
 
Ja inderdaad, ik snap gewoon niet waarom het convergentiegebied 0 zou moeten zijn. Moet ja dan als je je oneindig het ingevuld x=0 doen mss? Ik ben niet meer mee...

Gebruikersavatar
Berichten: 1.970

Re: Taylorreeks

Als x=0 dan zijn alle termen nul; dan kan de som ook alleen maar nul zijn. Voor alle andere waardes van x wint n! het altijd.

Gebruikersavatar
Berichten: 2.710

Re: Taylorreeks

Annelies687 schreef:  
Ja inderdaad, ik snap gewoon niet waarom het convergentiegebied 0 zou moeten zijn. Moet ja dan als je je oneindig het ingevuld x=0 doen mss? Ik ben niet meer mee...
Ik heb dat aan gegeven, maar het is automatisch verkeerd aan elkaar geplakt.
 
Het is de nul reeks dan mag het kenmerk niet worden toegepast.
In de wiskunde zijn er geen Koninklijke wegen Majesteit.

Gebruikersavatar
Berichten: 1.970

Re: Taylorreeks

Op het blaadje in #7 staat in de derde regel (x+1) waar het (n+1) moet zijn (teller tussen absoluutstrepen).
 
Of heb je dat weer in Griekse letters gecorrigeerd?

Berichten: 28

Re: Taylorreeks

tempelier schreef: Ik heb dat aan gegeven, maar het is automatisch verkeerd aan elkaar geplakt.
 
Het is de nul reeks dan mag het kenmerk niet worden toegepast.
 
Xilvo schreef: Op het blaadje in #7 staat in de derde regel (x+1) waar het (n+1) moet zijn (teller tussen absoluutstrepen).
 
Of heb je dat weer in Griekse letters gecorrigeerd?
 
Ahnja oke zo, dus omdat het de  nul reeks is mag het kenmerk niet worden toegepast.
Ja, dat was een foutje, moest inderdaad (n+1) zijn
 
Oke, heel erg bedankt Xilvo en Tempelier!

Gebruikersavatar
Berichten: 24.497

Re: Taylorreeks

Annelies687 schreef: Ahnja oke zo, dus omdat het de  nul reeks is mag het kenmerk niet worden toegepast.
 
Je mag het kenmerk wel toepassen, maar je moet dat goed doen: let op dat je x en n niet (een paar keer) verwisselt...
 
Je krijgt dus:
 
\(\lim_{n\to\infty}\left|\frac{(n+1)!\;x^{n+1}}{n!\;x^n}\right|=\lim_{n\to\infty}\left| (n+1)\;x}\right|\)
 
Deze limiet hangt af van x:
- als x verschillend is van 0, is de limiet oneindig (en zegt het kenmerk dus divergent);
- als x gelijk is aan 0, heb je (n+1)*0 = 0 en is de limiet, ook voor n naar oneindig, 0 (en zegt het kenmerk dus convergent).
 
Merk op dat een machtreeks nooit overal divergent kan zijn, een machtreeks convergeert steeds in het centrum.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

Reageer