orthonormale basis

Moderator: dirkwb

Gebruikersavatar
Berichten: 72

orthonormale basis

Ik moet een orthonormale basis bèta (v1;v2;v3) vinden voor R3 waarvan de eerste twee vectoren in het vlak 2x+z=0 liggen.

Nu kom ik deze basis uit: (0 , 1 , 0), (-2/√5 , 0 , 4/√5) en (2/√5 , 0 , 1/√5).

Daarnaast moet ik de matrixvoorstelling ten opzichte van bèta van de spiegeling om de rechte door v2 bepalen?
Enig idee hoe je hier aan begint?

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.
Gebruikersavatar
Berichten: 2.249

Re: orthonormale basis

Bij een orthonormale basis moeten de basisvectoren eenheidsvectoren zijn. Dat is bij jouw basis niet zo.
Verder zie ik niet hoe je om een rechte kunt spiegelen. In een driedimensionale ruimte spiegel je, volgens mij, t.o.v. een vlak.

Gebruikersavatar
Berichten: 72

Re: orthonormale basis

Bij een orthonormale basis moeten de vectoren twee aan twee loodrecht op elkaar staan en genormeerd zijn. Dat de basisvectoren de eenheidsvectoren zijn heeft er volgens mij niets mee te maken? Ik bedoelde een vlak :), dus het vlak 2x+z=0

Gebruikersavatar
Berichten: 2.249

Re: orthonormale basis

Eenheidsvector = genormeerde vector = vector met lengte 1.

Gebruikersavatar
Berichten: 2.771

Re: orthonormale basis

De afbeeldingsmatrix wordt opgebouwd uit de beelden van de vectoren van β

Gebruikersavatar
Berichten: 72

Re: orthonormale basis

Ok, ik heb de basis aangepast naar (0,1,0) , (-1/√5,0,2/√5) en (2/√5,0,1/√5).
Laatst gewijzigd door pinguin159 op ma 12 aug 2019, 15:15, 2 keer totaal gewijzigd.

Gebruikersavatar
Berichten: 2.249

Re: orthonormale basis

Nu ligt de eerste niet meer in het vlak en heeft evenmin lengte 1.
Bovendien zijn de eerste en de tweede niet lineair onafhankelijk.

Edit: Ik zie dat je je bericht gewijzigd hebt. Maar nu voldoet de tweede niet aan de eis.

En nogmaals gewijzigd, zie ik. Nu lijkt het ok.
Laatst gewijzigd door Xilvo op ma 12 aug 2019, 15:17, 2 keer totaal gewijzigd.

Gebruikersavatar
Berichten: 72

Re: orthonormale basis

Had mijn fout te laat gezien :)


Gebruikersavatar
Berichten: 72

Re: orthonormale basis

Dus de eerste twee vectoren liggen in het vlak, dus daar verandert er niets? Alleen de laatste vector zal getransformeerd worden?

Gebruikersavatar
Berichten: 2.249

Re: orthonormale basis

Ja. En die matrix moet deze nieuwe vectoren als basis hebben, als ik de vraag goed begrijp. Niet moeilijk, toch?

Gebruikersavatar
Berichten: 2.771

Re: orthonormale basis

pinguin159 schreef:
ma 12 aug 2019, 15:50
Dus de eerste twee vectoren liggen in het vlak, dus daar verandert er niets? Alleen de laatste vector zal getransformeerd worden?
Ja en die staat loodrecht op het vlak, dus het beeld is direct te zien.

Gebruikersavatar
Berichten: 72

Re: orthonormale basis

gwn een min ervoor ?

Gebruikersavatar
Berichten: 2.249

Re: orthonormale basis

Waarvoor? Hoe komt de matrix eruit te zien?

Gebruikersavatar
Berichten: 72

Re: orthonormale basis

1 0 0 . ik dacht zo
0 1 0
0 0 -1

Gebruikersavatar
Berichten: 2.249

Re: orthonormale basis

Dacht ik ook :)

Reageer