Lineaire afbeelding

Moderators: ArcherBarry, Drieske, Fuzzwood

Reageer
Berichten: 3

Lineaire afbeelding

Hallo,

Ik heb een vraag i.v.m. het al dan niet lineair zijn van afbeeldingen.

De stelling ter verificatie van het lineair zijn is als volgt :

Een functie f: R^n -> R^m is lineair als en slechts als



- f(Λx+ μy) = Λf(x) + μf(y)

voor alles x,y element van R^n en alle Λ,μ element van R.

In mijn syllabus staat dat de volgende functie lineair is :

- f : R² -> R: (x1,x2) |--> 2x1-x2

In die zelfde syllabus staat dat de volgende functie niet lineair is :

- f : R² -> R: (x1,x2) |--> 2x1-x2 + 5

Hoe verloopt de argumentatie precies? Want ik begrijp het niet echt.

Dank je

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.
Berichten: 2.746

Re: Lineaire afbeelding

Een lineaire afbeelding moet de 'oorsprong' altijd bevatten, je tweede voorbeeld bevat die duidelijk niet

Gebruikersavatar
Berichten: 24.466

Re: Lineaire afbeelding

Aanvulling: je kan tonen dat een lineaire afbeelding de nulvector steeds afbeeldt op de nulvector, dat gaat dus mis in het tweede geval en daar doelt stoker op.

Voor het eerste geval: als f inderdaad lineair zou zijn en je wil dit tonen, zit er niets anders op dan het even te bewijzen, met de definitie die je zelf al gaf.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

Berichten: 3

Re: Lineaire afbeelding

TD schreef:Aanvulling: je kan tonen dat een lineaire afbeelding de nulvector steeds afbeeldt op de nulvector, dat gaat dus mis in het tweede geval en daar doelt stoker op.

Voor het eerste geval: als f inderdaad lineair zou zijn en je wil dit tonen, zit er niets anders op dan het even te bewijzen, met de definitie die je zelf al gaf.
Beste,

Alvast bedankt voor het (spoedig) antwoorden. Hetgeen u als laatste zegt, dan is het hem precies. Hoe pas ik beide functies precies toe? Dus hoe verloopt het bewijs in die 2 particuliere gevallen? Ik heb nml. niet door hoe je aan dit bewijs begint. Moet aan x1 en x2 de waarden 0 toewijzen? :s

Met vriendelijke groeten,

Siant

Berichten: 2.746

Re: Lineaire afbeelding

f(Λ(x1,x2)+ μ(y1,y2) )= f(Λx1+μy1, Λx2+μy2)= 2(Λx1+μy1)-(Λx2+μy2) = Λ(2x1-x2)+ μ(2y1-y2) = Λf(x1,x2) + μf(y1,y2)

Gebruikersavatar
Berichten: 24.466

Re: Lineaire afbeelding

Alvast bedankt voor het (spoedig) antwoorden. Hetgeen u als laatste zegt, dan is het hem precies. Hoe pas ik beide functies precies toe? Dus hoe verloopt het bewijs in die 2 particuliere gevallen? Ik heb nml. niet door hoe je aan dit bewijs begint. Moet aan x1 en x2 de waarden 0 toewijzen? :s
In woorden verloopt dit als volgt: bepaal het beeld van een lineaire combinatie (dus neem twee scalairen en twee vectoren en vorm een lineaire combinatie; bepaal daarvan het beeld) en ga na of dit te schrijven is als lineaire combinatie van de afzonderlijke beelden (van de vectoren die je genomen had).
f(Λ(x1,x2)+ μ(y1,y2) )= f(Λx1+μy1, Λx2+μy2)= 2(Λx1+μy1)-(Λx2+μy2) = Λ(2x1-x2)+ μ(2y1-y2) = Λf(x1,x2) + μf(y1,y2)
Probeer het geven van een volledig antwoord (zonder duiding) te vermijden, zie intenties van dit forum...
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

Reageer