Oneindige som
-
- Berichten: 152
Oneindige som
Hallo iedereen
op het net kwam ik het volgende "redenering" tegen:
S = 1 + 2 + 4 + 8 +...
Bereken S.
Als "oplossing" werd gegeven:
S = 1 + 2 ( 1 + 2 +4 + ...) = 1 + 2 S
S = -1 ?
Waar zit de fout in deze redenering/methode?
Dank voor een reactie.
op het net kwam ik het volgende "redenering" tegen:
S = 1 + 2 + 4 + 8 +...
Bereken S.
Als "oplossing" werd gegeven:
S = 1 + 2 ( 1 + 2 +4 + ...) = 1 + 2 S
S = -1 ?
Waar zit de fout in deze redenering/methode?
Dank voor een reactie.
- Berichten: 4.837
Re: Oneindige som
Omdat de reden r>1 divergeert de reeks, d.w.z. de som S gaat naar oneindig.
Het is dan niet correct om algebraïsche bewerkingen toe te passen zoals je zou doen met een convergente som.
Het is dan niet correct om algebraïsche bewerkingen toe te passen zoals je zou doen met een convergente som.
-
- Berichten: 152
Re: Oneindige som
Beste
Dank voor uw snel en helder antwoord.
Vriendelijke groeten
Aljechin
Dank voor uw snel en helder antwoord.
Vriendelijke groeten
Aljechin
-
- Berichten: 47
Re: Oneindige som
Ik zie waar t vanaf komt, maar het is heel specifiek.
Het komt uit een binair stelsel, maar verkeerd gebruikt.
Als je +1+2+4+8+16+32+64+128 optelt en dit in een signed byte stopt dan krijg je idd -1.
Maar t rammelt aan alle kanten.
Logischerwijs gaat deze reeeks idd naar oneindig.
groeten
jeroen
Het komt uit een binair stelsel, maar verkeerd gebruikt.
Als je +1+2+4+8+16+32+64+128 optelt en dit in een signed byte stopt dan krijg je idd -1.
Maar t rammelt aan alle kanten.
Logischerwijs gaat deze reeeks idd naar oneindig.
groeten
jeroen
- Berichten: 239
Re: Oneindige som
Een oneindige som is zinvol als de rij van partieelsommen convergeert naar een getal. In dit voorbeeld is de rij van partieelsommen: 1, 1+2, 1+2+4, 1+2+4+8,..., dus 1, 3, 7, 15,...
Convergeren naar een getal wil zeggen dat de afstand tot dat getal willekeurig klein kan worden. Het woordje 'afstand' is hier van belang. Wat bedoel je met afstand? Normaal gebruiken we als afstand tussen 2 getallen a en b de absolute waarde van a-b. Dus de afstand tussen 3 en 15 is |3-15|=12. Deze (meestal gebruikte) afstand is de zogenaamde euclidische afstand. Maar je kan ook andere soorten afstand gebruiken.
Bijvoorbeeld de 2-adische afstand bij rationale getallen a en b. In plaats van de absolute waarde te nemen kijken we naar de hoogste macht van 2 die in de teller van a-b voorkomt, noem deze even m. De 2-adische afstand tussen a en b wordt dan gedefinieerd als 1/2m. Om met dezelfde getallen te werken: de 2-adische afstand tussen 3 en 15 vinden door 3-15=-12 zoveel mogelijk te delen door 2. 4 kan maar 8 niet meer, de afstand is dus 1/8.
Zo vinden we de afstand tussen:
-1 en 1 ---> 1- (-1)=2 dus afstand is 1/2
-1 en (1+2) ---> (1+2)-(-1)=4 dus afstand is 1/4
-1 en (1+2+4) --->(1+2+4)-(-1)=8 dus afstand is 1/8
Zo zie je dat 1+2+4+8+.. zo dicht als je maar wil bij -1 ligt (in 2-adische afstand) en dat je dus wel degelijk kunt zeggen dat -1=1+2+4+8+...
In de juiste context natuurlijk.
Iets gelijkaardig, maar niet hetzelfde, heb je bij bv de som van Ramanujan 1+2+3+4+5+6+...=-1/12
Convergeren naar een getal wil zeggen dat de afstand tot dat getal willekeurig klein kan worden. Het woordje 'afstand' is hier van belang. Wat bedoel je met afstand? Normaal gebruiken we als afstand tussen 2 getallen a en b de absolute waarde van a-b. Dus de afstand tussen 3 en 15 is |3-15|=12. Deze (meestal gebruikte) afstand is de zogenaamde euclidische afstand. Maar je kan ook andere soorten afstand gebruiken.
Bijvoorbeeld de 2-adische afstand bij rationale getallen a en b. In plaats van de absolute waarde te nemen kijken we naar de hoogste macht van 2 die in de teller van a-b voorkomt, noem deze even m. De 2-adische afstand tussen a en b wordt dan gedefinieerd als 1/2m. Om met dezelfde getallen te werken: de 2-adische afstand tussen 3 en 15 vinden door 3-15=-12 zoveel mogelijk te delen door 2. 4 kan maar 8 niet meer, de afstand is dus 1/8.
Zo vinden we de afstand tussen:
-1 en 1 ---> 1- (-1)=2 dus afstand is 1/2
-1 en (1+2) ---> (1+2)-(-1)=4 dus afstand is 1/4
-1 en (1+2+4) --->(1+2+4)-(-1)=8 dus afstand is 1/8
Zo zie je dat 1+2+4+8+.. zo dicht als je maar wil bij -1 ligt (in 2-adische afstand) en dat je dus wel degelijk kunt zeggen dat -1=1+2+4+8+...
In de juiste context natuurlijk.
Iets gelijkaardig, maar niet hetzelfde, heb je bij bv de som van Ramanujan 1+2+3+4+5+6+...=-1/12
- Berichten: 239
Re: Oneindige som
Vervelend dat je je eigen berichten na korte tijd niet meer kan aanpassen. Een nieuwe post dan maar.
De 2-adische afstand tussen 3 en 15 vinden door 3-15=-12 zoveel mogelijk te delen door 2. 4 kan maar 8 niet meer, de afstand is dus 1/4
De 2-adische afstand tussen 3 en 15 vinden door 3-15=-12 zoveel mogelijk te delen door 2. 4 kan maar 8 niet meer, de afstand is dus 1/4
- Moderator
- Berichten: 10.591
Re: Oneindige som
Waarom zou je zo'n 2-adische afstand gebruiken?
Kun je op dezelfde manier niet beredeneren dat de 2-adische afstand van 1+2+4+... met -2 tot nul nadert?
Kun je op dezelfde manier niet beredeneren dat de 2-adische afstand van 1+2+4+... met -2 tot nul nadert?
- Berichten: 239
Re: Oneindige som
Nee, in een metrische ruimte kan een rij hoogstens één limiet hebben. In dit voorbeeld:
-2 en 1 ---> 1- (-2)=3 dus afstand is 1/2^0=1
-2 en (1+2) ---> (1+2)-(-2)=5 dus afstand is 1/2^0=1
-2 en (1+2+4) --->(1+2+4)-(-2)=7 dus afstand is 1/2^0=1
algemeen 1+2+...+2^n - (-2)=2^(n+1)+1 heeft nooit een factor 2, dus elke partiële som heeft afstand 1 tot -2 (of tot eender welk even getal)
Deze afstand/norm heeft veel nut in getaltheorie. Het laat toe om binnen getaltheorie te werken met reeksen en zo een vorm van analyse binnen te brengen, de zgn p-adische analyse. Met veel analogieën tussen de gewone en die nieuwe analyse. Bv het lemma van Hensel om nulpunten te vinden van veeltermen modulo p is analoog aan de nulpunten benaderingsmethode van Newton. Ook een interessant verband is het local-global principle van Hasse dat voor sommige soorten vergelijking zegt dat er een oplossing in de rationale getallen bestaat als en slechts als er een oplossing is in de reële getallen én in de p-adische getallen voor elke priem p.
-2 en 1 ---> 1- (-2)=3 dus afstand is 1/2^0=1
-2 en (1+2) ---> (1+2)-(-2)=5 dus afstand is 1/2^0=1
-2 en (1+2+4) --->(1+2+4)-(-2)=7 dus afstand is 1/2^0=1
algemeen 1+2+...+2^n - (-2)=2^(n+1)+1 heeft nooit een factor 2, dus elke partiële som heeft afstand 1 tot -2 (of tot eender welk even getal)
Deze afstand/norm heeft veel nut in getaltheorie. Het laat toe om binnen getaltheorie te werken met reeksen en zo een vorm van analyse binnen te brengen, de zgn p-adische analyse. Met veel analogieën tussen de gewone en die nieuwe analyse. Bv het lemma van Hensel om nulpunten te vinden van veeltermen modulo p is analoog aan de nulpunten benaderingsmethode van Newton. Ook een interessant verband is het local-global principle van Hasse dat voor sommige soorten vergelijking zegt dat er een oplossing in de rationale getallen bestaat als en slechts als er een oplossing is in de reële getallen én in de p-adische getallen voor elke priem p.
- Moderator
- Berichten: 10.591
Re: Oneindige som
Ok, die macht moet een factor zijn. Ik was even op het verkeerde been gezet door 1/8 bij 12, maar ik had je correctie al gelezen dus dat is geen excuus.
Is dit equivalent:
s=1+2+4+...=1+2s
=> s=-1
?
Is dit equivalent:
s=1+2+4+...=1+2s
=> s=-1
?
- Berichten: 4.543
Re: Oneindige som
het gaat fout in de aanname
1 + 2 ( 1 + 2 +4 + ...) = 1 + 2 S
als je S even bekijkt voor een deel van de som dan zie je het" S zou dan gelijk moeten aan aan S1, maar zoals je ziet bevat S1 altijd 1 som meer. in het voorbeeld is dat het getal 32. terwijl als je het tussen haakjes neemt is het laatste getal maar 16.
dus S is niet gelijk aan 1+2S. Dat geldt voor n termen maar ook voor n gaande naar oneindig.
voor 6 termen zit je er dus 2^6 naast. voor oneindig termen zit je er dan 2^oneindig naast.
1 + 2 ( 1 + 2 +4 + ...) = 1 + 2 S
als je S even bekijkt voor een deel van de som dan zie je het" S zou dan gelijk moeten aan aan S1, maar zoals je ziet bevat S1 altijd 1 som meer. in het voorbeeld is dat het getal 32. terwijl als je het tussen haakjes neemt is het laatste getal maar 16.
dus S is niet gelijk aan 1+2S. Dat geldt voor n termen maar ook voor n gaande naar oneindig.
voor 6 termen zit je er dus 2^6 naast. voor oneindig termen zit je er dan 2^oneindig naast.
Laatst gewijzigd door HansH op ma 15 jul 2024, 22:22, 1 keer totaal gewijzigd.
- Moderator
- Berichten: 10.591
Re: Oneindige som
Rekenen/redeneren met oneindigheden is lastig, toegegeven. Maar bij een oneindige reeks is er geen laatste term.
- Berichten: 4.543
Re: Oneindige som
de structuur blijft hetzelfde dus dat is het bewijs. je kunt er dus steeds een term bij doen en dan zie je dat het idee precies hetzelfe blijft. dus dan is het alleen nog een kwestie van de limiet nemen naar oneindig. maar dat zijn we toch wel gewend met limieten?
- Moderator
- Berichten: 10.591
- Berichten: 4.543
Re: Oneindige som
voor elke m>0 betekent het dus dat het veronderstelde verband S=1+2S niet klopt. Voor m naar oneindig maak je dan een oneindig grote fout op de uitkomst S=-1