Springen naar inhoud

Nooit iets kunnen aanrraken


  • Log in om te kunnen reageren

#1

Valentios

    Valentios


  • 0 - 25 berichten
  • 1 berichten
  • Gebruiker

Geplaatst op 12 maart 2010 - 20:50

Door dat een bepaalde afstand alsmaar gehalveerd kan worden......
Kun je steeds dichter een object benaderen, maar het nooit werkelijk aanraken.
Ik denk niet dat ik veel meer hoef uitteleggen.
Je rent bv naar een eindstreep, 10 meter nog te gaan, nog 5 meter te gaan 2,5 meter ... enz enz...
de afstand wordt ooit onwaarswchijnlijk klein, maar is er een punt in de wiskunde die bepaalt dat je de eindstreep
nu echt hebt bereikt??
Ik vraag me dit al lange tijd af, ik geloof dat de tijd hier een rol in speelt...
Wie weet een goede verklaring?

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

Tommeke14

    Tommeke14


  • >250 berichten
  • 771 berichten
  • Ervaren gebruiker

Geplaatst op 12 maart 2010 - 21:07

Dit is toch louter een limiet

als n het aantal halveringen is en x je startafstand, wordt de afstand tot de streep gegeven door
x/2^n

als je deze n naar oneindig laat gaan, gaat de afstand (zoals verwacht) naar 0
Dus je bereikt de eindstreep wel , wiskundig gezien, weliswaar na oneindig keer halveren

In praktijk je kan je oneindig keer halveren, en zal je gewoon zeer dicht komen, tot het verschil gewoon onmeetbaar is
(maar je kan nooit zeggen dat je over de streep bent eigenlijk)

Veranderd door Tommeke14, 12 maart 2010 - 21:08


#3

Safe

    Safe


  • >5k berichten
  • 9907 berichten
  • Pluimdrager

Geplaatst op 12 maart 2010 - 21:14

'In de wiskunde' kan je dit punt nooit bereiken.

#4

*_gast_Bartjes_*

  • Gast

Geplaatst op 12 maart 2010 - 21:52

Dit is ťťn van de paradoxen van Zeno (ca. 490 v. Christus - ca. 430 v. Christus). Met boeken over dit onderwerp kan je een stevige boekenkast vullen. Ik zou hier beginnen:

http://en.wikipedia....eno's_paradoxes

#5

thermo1945

    thermo1945


  • >1k berichten
  • 3112 berichten
  • Verbannen

Geplaatst op 12 maart 2010 - 23:42

Door dat een bepaalde afstand alsmaar gehalveerd kan worden... . Kun je steeds dichter een object benaderen, maar het nooit werkelijk aanraken. ...ik geloof dat de tijd hier een rol in speelt.

Je doorloop de hele afstand (zeg maar) met constante snelheid. Dat je die afstand in gedacht verdeelt in deelafstanden speelt geen rol.
Wat de tijd betreft: elk stukje afstand dat gehalveerd is wordt dan ook in gehalveerde tijd afgelegd maar steeds weer met dezelfde snelheid.

#6

*_gast_Denkertje70_*

  • Gast

Geplaatst op 13 maart 2010 - 00:22

We kunnen dit ook anders benaderen.

Als we de afstand halveren van 10 naar 5m in 1 sec, dan wanneer de afstand weer gehalveerd wordt wordt ook te tijd gehalveerd, dus van 5 naar 2,5m in 1/2sec enz...

Maar vermist de tijd altijd constant vooruit gaat, gaan we de eindstreep dan altijd bereiken, we gaan de gehalveerde afstand steeds sneller en sneller afleggen.

Op deze manier kan je vele dingen aanhalen, bvb een pint die je nooit kan leegdrinken als je altijd de helft drinkt etc...

Veranderd door Denkertje70, 13 maart 2010 - 00:33






0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures