Springen naar inhoud

Snelheid elektronen om de atoomkern


  • Log in om te kunnen reageren

#1

aaargh

    aaargh


  • >1k berichten
  • 1279 berichten
  • Ervaren gebruiker

Geplaatst op 01 maart 2005 - 18:36

Ik heb een formuletje gevonden om de snelheid van de elektroen om de atoomkern te bereken.
mvČ         feČ
-----   =  ------  
a           aČ

dus 

mvČa = feČ    (1)

en mva = nh  (2)
        ----
         2pi

(1)/(2) => v  = feČ2pi
                -------
                  nh


Als je dat uitwerkt krijg je 2187691.252 m/s

Klopt dit?
Ik heb geen rekening gehouden met de relativiteit. :shock:

Dit forum kan gratis blijven vanwege banners als deze. Door te registeren zal de onderstaande banner overigens verdwijnen.

#2

aaargh

    aaargh


  • >1k berichten
  • 1279 berichten
  • Ervaren gebruiker

Geplaatst op 01 maart 2005 - 21:15

Iemand?

#3

Wouter_Masselink

    Wouter_Masselink


  • >5k berichten
  • 8247 berichten
  • VIP

Geplaatst op 02 maart 2005 - 11:33

*Heisenberg's onzekerheidsprincipe zegt dat je niet de snelheid kan berekenen als je heel exact het punt weet en omgekeerd.
zie ookhttp://www.wetenscha...?showtopic=6432.
"Meep meep meep." Beaker

#4

Bart

    Bart


  • >5k berichten
  • 7224 berichten
  • VIP

Geplaatst op 02 maart 2005 - 17:52

mv2 / r is een klassieke benadering die niet opgaat voor dit soort kleine deeltjes. Daarvoor is de Quantum Mechanica.
If I have seen further it is by standing on the shoulders of giants.-- Isaac Newton

#5


  • Gast

Geplaatst op 02 maart 2005 - 21:04

Je kunt aantonen dat voor een waterstofatoom de snelheid van elektronen ca 1 procent van de lichtsnelheid is. Hier kun je dus prima niet-relativistische QM op toepassen. Als die snelheid wel in de buurt van c komt, dan heb je de Klein Gordon vergelijking nodig. Die kun je erg eenvoudig verkrijgen door de relativistische hamiltoniaan in je schrodingervergelijking te stouwen.

#6

aaargh

    aaargh


  • >1k berichten
  • 1279 berichten
  • Ervaren gebruiker

Geplaatst op 03 maart 2005 - 20:45

mv2 / r is een klassieke benadering die niet opgaat voor dit soort kleine deeltjes. Daarvoor is de Quantum Mechanica.


Mag wel, Bohr heeft zo zijn vergelijkingen opgesteld.

#7


  • Gast

Geplaatst op 03 maart 2005 - 22:27

Je kunt aantonen dat voor een waterstofatoom de snelheid van elektronen ca 1 procent van de lichtsnelheid is. Hier kun je dus prima niet-relativistische QM op toepassen. Als die snelheid wel in de buurt van c komt, dan heb je de Klein Gordon vergelijking nodig. Die kun je erg eenvoudig verkrijgen door de relativistische hamiltoniaan in je schrodingervergelijking te stouwen.

Neen. Electronen zijn fermionen. Je hebt de Dirac-vergelijking nodig.





0 gebruiker(s) lezen dit onderwerp

0 leden, 0 bezoekers, 0 anonieme gebruikers

Ook adverteren op onze website? Lees hier meer!

Gesponsorde vacatures

Vacatures